
Writing a Paper
& Research Career Paths

CS 197 | Stanford University | Michael Bernstein

Today’s goals
We have a bunch of things we tried, some of them worked, some
of them didn’t — how do we write a paper about this?

Introducing the concept of model papers and how to use them

What happens if I keep doing research at Stanford? And after?

2

Writing A Paper

Scene Graph Prediction with Limited Labels

Vincent S. Chen, Paroma Varma, Ranjay Krishna, Michael Bernstein, Christopher Ré, Li Fei-Fei
Stanford University

{vincentsc, paroma, ranjaykrishna, msb, chrismre, feifeili}@cs.stanford.edu

Abstract

Visual knowledge bases such as Visual Genome power
numerous applications in computer vision, including visual
question answering and captioning, but suffer from sparse,
incomplete relationships. All scene graph models to date
are limited to training on a small set of visual relationships
that have thousands of training labels each. Hiring human
annotators is expensive, and using textual knowledge base
completion methods are incompatible with visual data. In
this paper, we introduce a semi-supervised method that as-
signs probabilistic relationship labels to a large number of
unlabeled images using few labeled examples. We analyze
visual relationships to suggest two types of image-agnostic
features that are used to generate noisy heuristics, whose out-
puts are aggregated using a factor graph-based generative
model. With as few as 10 labeled examples per relation-
ship, the generative model creates enough training data to
train any existing state-of-the-art scene graph model. We
demonstrate that our method outperforms all baseline ap-
proaches on scene graph prediction by 5.16 recall@100
for PREDCLS. In our limited label setting, we define a
complexity metric for relationships that serves as an indi-
cator (R2 = 0.778) for conditions under which our method
succeeds over transfer learning, the de-facto approach for
training with limited labels.

1. Introduction
In an effort to formalize a structured representation for

images, Visual Genome [27] defined scene graphs, a for-
malization similar to those widely used to represent knowl-
edge bases [13, 18, 56]. Scene graphs encode objects (e.g.
person, bike) as nodes connected via pairwise relation-
ships (e.g., riding) as edges. This formalization has led
to state-of-the-art models in image captioning [3], image
retrieval [25, 42], visual question answering [24], relation-
ship modeling [26] and image generation [23]. However,
all existing scene graph models ignore more than 98% of
relationship categories that do not have sufficient labeled
instances (see Figure 2) and instead focus on modeling the

$Q\�H[LVWLQJ�
VFHQH�JUDSK�

PRGHO

2XU�VHPL�
VXSHYLVHG�
PHWKRG

3UREDELOLVWLF�WUDLQLQJ�ODEHOV�/LPLWHG�ODEHOV

8QODEHOHG�LPDJHV
(DW������

(DW�����

(DW������

(DW�����

Figure 1. Our semi-supervised method automatically generates
probabilistic relationship labels to train any scene graph model.

few relationships that have thousands of labels [31, 49, 54].
Hiring more human workers is an ineffective solution to

labeling relationships because image annotation is so tedious
that seemingly obvious labels are left unannotated. To com-
plement human annotators, traditional text-based knowledge
completion tasks have leveraged numerous semi-supervised
or distant supervision approaches [6, 7, 17, 34]. These meth-
ods find syntactical or lexical patterns from a small labeled
set to extract missing relationships from a large unlabeled
set. In text, pattern-based methods are successful, as relation-
ships in text are usually document-agnostic (e.g. <Tokyo
- is capital of - Japan>). Visual relationships are
often incidental: they depend on the contents of the partic-
ular image they appear in. Therefore, methods that rely on
external knowledge or on patterns over concepts (e.g. most
instances of dog next to frisbee are playing with it)
do not generalize well. The inability to utilize the progress
in text-based methods necessitates specialized methods for
visual knowledge.

In this paper, we automatically generate missing rela-
tionships labels using a small, labeled dataset and use these
generated labels to train downstream scene graph models
(see Figure 1). We begin by exploring how to define image-
agnostic features for relationships so they follow patterns
across images. For example, eat usually consists of one
object consuming another object smaller than itself, whereas
look often consists of common objects: phone, laptop,
or window (see Figure 3). These rules are not dependent on
raw pixel values; they can be derived from image-agnostic
features like object categories and relative spatial positions
between objects in a relationship. While such rules are sim-
ple, their capacity to provide supervision for unannotated
relationships has been unexplored. While image-agnostic

1

ar
X

iv
:1

90
4.

11
62

2v
2

 [c
s.C

V
]

20
 A

ug
 2

01
9

NUM. LABELED ( n) 200 175 150 125 100 75 50 25 10 5
% RELATIONSHIPS 99.09 99.00 98.87 98.74 98.52 98.15 97.57 96.09 92.26 87.28

Figure 2. Visual relationships have a long tail (left) of infrequent relationships. Current models [49,54] only focus on the top 50 relationships
(middle) in the Visual Genome dataset, which all have thousands of labeled instances. This ignores more than 98% of the relationships with
few labeled instances (right, top/table).

features can characterize some visual relationships very well,
they might fail to capture complex relationships with high
variance. To quantify the efficacy of our image-agnostic
features, we define “subtypes” that measure spatial and cate-
gorical complexity (Section 3).

Based on our analysis, we propose a semi-supervised ap-
proach that leverages image-agnostic features to label miss-
ing relationships using as few as 10 labeled instances of each
relationship. We learn simple heuristics over these features
and assign probabilistic labels to the unlabeled images using
a generative model [39, 46]. We evaluate our method’s label-
ing efficacy using the completely-labeled VRD dataset [31]
and find that it achieves an F1 score of 57.66, which is 11.84
points higher than other standard semi-supervised methods
like label propagation [57]. To demonstrate the utility of
our generated labels, we train a state-of-the-art scene graph
model [54] (see Figure 6) and modify its loss function to
support probabilistic labels. Our approach achieves 47.53
recall@1001 for predicate classification on Visual Genome,
improving over the same model trained using only labeled
instances by 40.97 points. For scene graph detection, our ap-
proach achieves within 8.65 recall@100 of the same model
trained on the original Visual Genome dataset with 108⇥
more labeled data. We end by comparing our approach to
transfer learning, the de-facto choice for learning from lim-
ited labels. We find that our approach improves by 5.16
recall@100 for predicate classification, especially for re-
lationships with high complexity, as it generalizes well to
unlabeled subtypes.

Our contributions are three-fold. (1) We introduce the
first method to complete visual knowledge bases by finding
missing visual relationships (Section 5.1). (2) We show the
utility of our generated labels in training existing scene graph
prediction models (Section 5.2). (3) We introduce a metric to
characterize the complexity of visual relationships and show
it is a strong indicator (R2 = 0.778) for our semi-supervised
method’s improvements over transfer learning (Section 5.3).

1Recall@K is a standard measure for scene graph prediction [31].

2. Related work
Textual knowledge bases were originally hand-curated by
experts to structure facts [4,5,44] (e.g. <Tokyo - capital
of - Japan>). To scale dataset curation efforts, recent
approaches mine knowledge from the web [9] or hire non-
expert annotators to manually curate knowledge [5, 47]. In
semi-supervised solutions, a small amount of labeled text is
used to extract and exploit patterns in unlabeled sentences [2,
21, 33–35, 37]. Unfortunately, such approaches cannot be
directly applied to visual relationships; textual relations can
often be captured by external knowledge or patterns, while
visual relationships are often local to an image.
Visual relationships have been studied as spatial priors [14,
16], co-occurrences [51], language statistics [28, 31, 53], and
within entity contexts [29]. Scene graph prediction mod-
els have dealt with the difficulty of learning from incom-
plete knowledge, as recent methods utilize statistical mo-
tifs [54] or object-relationship dependencies [30, 49, 50, 55].
All these methods limit their inference to the top 50 most
frequently occurring predicate categories and ignore those
without enough labeled examples (Figure 2).

The de-facto solution for limited label problems is trans-
fer learning [15, 52], which requires that the source domain
used for pre-training follows a similar distribution as the
target domain. In our setting, the source domain is a dataset
of frequently-labeled relationships with thousands of exam-
ples [30, 49, 50, 55], and the target domain is a set of limited
label relationships. Despite similar objects in source and
target domains, we find that transfer learning has difficulty
generalizing to new relationships. Our method does not rely
on availability of a larger, labeled set of relationships; in-
stead, we use a small labeled set to annotate the unlabeled
set of images.

To address the issue of gathering enough training la-
bels for machine learning models, data programming has
emerged as a popular paradigm. This approach learns to
model imperfect labeling sources in order to assign train-
ing labels to unlabeled data. Imperfect labeling sources
can come from crowdsourcing [10], user-defined heuris-
tics [8, 43], multi-instance learning [22, 40], and distant su-

!ƏɎƺǕȒȸǣƬƏǼ�ǔƺƏɎɖȸƺɀ
³ȵƏɎǣƏǼ�ǔƺƏɎɖȸƺɀ

Figure 3. Relationships, such as fly, eat, and sit can be characterized effectively by their categorical (s and o refer to subject and object,
respectively) or spatial features. Some relationships like fly rely heavily only on a few features — kites are often seen high up in the sky.

pervision [12, 32]. Often, these imperfect labeling sources
take advantage of domain expertise from the user. In our
case, imperfect labeling sources are automatically generated
heuristics, which we aggregate to assign a final probabilistic
label to every pair of object proposals.

3. Analyzing visual relationships
We define the formal terminology used in the rest of the

paper and introduce the image-agnostic features that our
semi-supervised method relies on. Then, we seek quantita-
tive insights into how visual relationships can be described
by the properties between its objects. We ask (1) what image-
agnostic features can characterize visual relationships? and
(2) given limited labels, how well do our chosen features
characterize the complexity of relationships? With these in
mind, we motivate our model design to generate heuristics
that do not overfit to the small amount of labeled data and
assign accurate labels to the larger, unlabeled set.

3.1. Terminology
A scene graph is a multi-graph G that consists of objects

o as nodes and relationships r as edges. Each object oi =
{bi, ci} consists of a bounding box bi and its category ci 2
C where C is the set of all possible object categories (e.g.
dog, frisbee). Relationships are denoted <subject
- predicate - object> or <o - p - o0>. p 2 P is a
predicate, such as ride and eat. We assume that
we have a small labeled set {(o, p, o0) 2 Dp} of annotated
relationships for each predicate p. Usually, these datasets
are on the order of a 10 examples or fewer. For our semi-
supervised approach, we also assume that there exists a large
set of images DU without any labeled relationships.

3.2. Defining image-agnostic features
It has become common in computer vision to utilize pre-

trained convolutional neural networks to extract features
that represent objects and visual relationships [31, 49, 50].
Models trained with these features have proven robust in
the presence of enough training labels but tend to overfit
when presented with limited data (Section 5). Consequently,
an open question arises: what other features can we utilize

to label relationships with limited data? Previous literature
has combined deep learning features with extra information
extracted from categorical object labels and relative spatial
object locations [25, 31]. We define categorical features,
< o,�, o0 >, as a concatenation of one-hot vectors of the
subject o and object o0. We define spatial features as:

x� x0

w
,
y � y0

h
,
(y + h)� (y0 + h0)

h
,

(x+ w)� (x0 + w0)

w
,
h0

h
,
w0

w
,
w0h0

wh
,
w0 + h0

w + h

where b = [y, x, h, w] and b0 = [y0, x0, h0, w0] are the top-
left bounding box coordinates and their widths and heights.

To explore how well spatial and categorical features can
describe different visual relationships, we train a simple
decision tree model for each relationship. We plot the im-
portances for the top 4 spatial and categorical features in
Figure 3. Relationships like fly place high importance on
the difference in y-coordinate between the subject and object,
capturing a characteristic spatial pattern. look, on the other
hand, depends on the category of the objects (e.g. phone,
laptop, window) and not on any spatial orientations.

3.3. Complexity of relationships
To understand the efficacy of image-agnostic features,

we’d like to measure how well they can characterize the
complexity of particular visual relationships. As seen in
Figure 4, a visual relationship can be defined by a number of
image-agnostic features (e.g. a person can ride a bike, or
a dog can ride a surfboard). To systematically define this
notion of complexity, we identify subtypes for each visual
relationship. Each subtype captures one way that a relation-
ship manifests in the dataset. For example, in Figure 4, ride
contains one categorical subtype with <person - ride -
bike> and another with <dog - ride - surfboard>.
Similarly, a person might carry an object in different rela-
tive spatial orientations (e.g. on her head, to her side). As
shown in Figure 5, visual relationships might have signifi-
cantly different degrees of spatial and categorical complex-
ity, and therefore a different number of subtypes for each.
To compute spatial subtypes, we perform mean shift clus-
tering [11] over the spatial features extracted from all the

���
���
���������
�
��������
	
�

����
��������
�
�������������

�
������ �
�
 	���� ��������	 �
������ ����
����	

Figure 4. We define the number of subtypes of a relationship as a measure of its complexity. Subtypes can be categorical — one subtype of
ride can be expressed as <person - ride - bike> while another is <dog - ride - surfboard>. Subtypes can also be spatial —
carry has a subtype with a small object carried to the side and another with a large object carried overhead.

Figure 5. A subset of visual relationships with different levels of complexity as defined by spatial and categorical subtypes. In Section 5.3,
we show how this measure is a good indicator of our semi-supervised method’s effectiveness compared to baselines like transfer learning.

relationships in Visual Genome. To compute the categorical
subtypes, we count the number of unique object categories
associated with a relationship.

With access to 10 or fewer labeled instances for these
visual relationships, it is impossible to capture all the sub-
types for given relationship and therefore difficult to learn a
good representation for the relationship as a whole. Conse-
quently, we turn to the rules extracted from image-agnostic
features and use them to assign labels to the unlabeled data
in order to capture a larger proportion of subtypes in each
visual relationship. We posit that this will be advantageous
over methods that only use the small labeled set to train a
scene graph prediction model, especially for relationships
with high complexity, or a large number of subtypes. In
Section 5.3, we find a correlation between our definition of
complexity and the performance of our method.

4. Approach

We aim to automatically generate labels for missing visual
relationships that can be then used to train any downstream
scene graph prediction model. We assume that in the long-
tail of infrequent relationships, we have a small labeled
set {(o, p, o0) 2 Dp} of annotated relationships for each
predicate p (often, on the order of a 10 examples or less). As
discussed in Section 3, we want to leverage image-agnostic
features to learn rules that annotate unlabeled relationships.

Our approach assigns probabilistic labels to a set DU of
un-annotated images in three steps: (1) we extract image-
agnostic features from the objects in the labeled Dp and

Algorithm 1 Semi-supervised Alg. to Label Relationships
1: INPUT: {(o, p, o0) 2 Dp}8p 2 P — A small dataset of object pairs (o, o0)

with multi-class labels for predicates.
2: INPUT: {(o, o0)} 2 DU} — A large unlabeled dataset of images with ob-

jects but no relationship labels.
3: INPUT: f(·, ·) — A function that extracts features from a pair of objects.
4: INPUT: DT (·) — A decision tree.
5: INPUT: G(·) — A generative model that assigns probabilistic labels given

multiple labels for each datapoint
6: INPUT: train(·) — Function used to train a scene graph detection model.
7: Extract features and labels, Xp, Yp := {f(o, o0), p for (o, p, o0) 2 Dp},

XU := {(f(o, o0) for (o, o0) 2 DU}
8: Generate heuristics by fitting J decision trees DTfit(Xp)
9: Assign labels to (o, o0) 2 DU , ⇤ = DTpredict(XU) for J decision trees.

10: Learn generative model G(⇤) and assign probabilistic labels ỸU := G(⇤)
11: Train scene graph model, SGM := train(Dp + DU , Yp + ỸU)
12: OUTPUT: SGM(·)

from the object proposals extracted using an existing object
detector [19] on unlabeled DU , (2) we generate heuristics
over the image-agnostic features, and finally (3) we use a
factor-graph based generative model to aggregate and as-
sign probabilistic labels to the unlabeled object pairs in DU .
These probabilistic labels, along with Dp, are used to train
any scene graph prediction model. We describe our approach
in Algorithm 1 and show the end-to-end pipeline in Figure 6.
Feature extraction: Our approach uses the image-agnostic
features defined in Section 3, which rely on object bounding
box and category labels. The features are extracted from
ground truth objects in Dp or from object detection outputs
in DU by running existing object detection models [19].
Heuristic generation: We fit decision trees over the la-
beled relationships’ spatial and categorical features to cap-
ture image-agnostic rules that define a relationship. These

Few Labeled
Relationships

Unlabeled
Relationships with
object detections

Image-Agnostic
Features

∆"
∆#
	%&'
…

Generative Model

Aggregated
Probabilistic Labels

carry = 0.8 carry = 0.2

Train any Scene
Graph Modelcarry = N/A carry = N/A

Semi-supervised
image-agnostic model

∆"
∆#
)*+,
… If ∆y < 0 then

0122#	 = 	425,

Generate J heuristics

Train factor graph-
based generative
model

Model can choose to abstain

Labels for carry

Labels for look
…

Large set of unlabeled
images

Mask-
RCNN

Heuristic generation

Figure 6. For a relationship (e.g., carry), we use image-agnostic features to automatically create heuristics and then use a generative model
to assign probabilistic labels to a large unlabeled set of images. These labels can then be used to train any scene graph prediction model.

image-agnostic rules are threshold-based conditions that are
automatically defined by the decision tree. To limit the com-
plexity of these heuristics and thereby prevent overfitting, we
use shallow decision trees [38] with different restrictions on
depth over each feature set to produce J different decision
trees. We then predict labels for the unlabeled set using these
heuristics, producing a ⇤ 2 RJ⇥|DU | matrix of predictions
for the unlabeled relationships.

Moreover, we only use these heuristics when they have
high confidence about their label; we modify ⇤ by converting
any predicted label with confidence less than a threshold
(empirically chosen to be 2⇥ random) to an abstain, or no
label assignment. An example of a heuristic is shown in
Figure 6: if the subject is above the object, it assigns a
positive label for the predicate carry.
Generative model: These heuristics, individually, are noisy
and may not assign labels to all object pairs in DU . As a
result, we aggregate the labels from all J heuristics. To do so,
we leverage a factor graph-based generative model popular
in text-based weak supervision techniques [1, 39, 41, 45, 48].
This model learns the accuracies of each heuristic to combine
their individual labels; the model’s output is a probabilistic
label for each object pair.

The generative model G uses the following distribution
family to relate the latent variable Y 2 R|DU |, the true class,
and the labels from the heuristics, ⇤:

⇡�(⇤, Y) =
1

Z�
exp

�
�T⇤Y

�

where Z� is a partition function to ensure ⇡ is normalized.
The parameter � 2 RJ encodes the average accuracy of
each heuristic and is estimated by maximizing the marginal
likelihood of the observed heuristic ⇤. The generative model
assigns probabilistic labels by computing ⇡�(Y | ⇤(o, o0))
for each object pair (o, o0) in DU .
Training scene graph model: Finally, these probabilistic
labels are used to train any scene graph prediction model.
While scene graph models are usually trained using a cross-
entropy loss [31,49,54], we modify this loss function to take

Table 1. We validate our approach for labeling missing relationships
using only n = 10 labeled examples by evaluating our probabilistic
labels from our semi-supervised approach over the fully-annotated
VRD using macro metrics dataset [31].

Model (n = 10) Prec. Recall F1 Acc.

RANDOM 5.00 5.00 5.00 5.00
DECISION TREE 46.79 35.32 40.25 36.92
LABEL PROPAGATION 76.48 32.71 45.82 12.85
OURS (MAJORITY VOTE) 55.01 57.26 56.11 40.04
OURS (CATEG. + SPAT.) 54.83 60.79 57.66 50.31

into account errors in the training annotations. We adopt a
noise-aware empirical risk minimizer that is often seen in
logistic regression as our loss function:

L✓ = EY⇠⇡

⇥
log

�
1 + exp(�✓TV TY)

�⇤

where ✓ is the learned parameters, ⇡ is the distribution
learned by the generative model, Y is the true label, and V
are features extracted by any scene graph prediction model.

5. Experiments
To test our semi-supervised approach for completing vi-

sual knowledge bases by annotating missing relationships,
we perform a series of experiments and evaluate our frame-
work in several stages. We start by discussing the datasets,
baselines, and evaluation metrics used. (1) Our first exper-
iment tests our generative model’s ability to find missing
relationships in the completely-annotated VRD dataset [31].
(2) Our second experiment demonstrates the utility of our
generated labels by using them to train a state-of-the-art
scene graph model [54]. We compare our labels to those
from the large Visual Genome dataset [27]. (3) Finally, to
show that our semi-supervised method’s performance com-
pared to strong baselines in limited label settings, we com-
pare extensively to transfer learning; we focus on a subset of
relationships with limited labels, allow the transfer learning
model to pretrain on frequent relationships, and demonstrate

�PDQ�IO\�NLWH!�䘟

D E F G H

�ERRN�ULGH�VKHOI!
�7*�ݵ�VLW

�JODVVHV�FRYHU�IDFH!
�7*�ݵ�VLW�PDQ�ORRN�SKRQH!�䘟

�VKLUW�VLW�FKDLU!
�7*�ݵ�KDQJ

Figure 7. (a) Heuristics based on spatial features help predict <man - fly - kite>. (b) Our model learns that look is highly correlated
with phone. (c) We overfit to the importance of chair as a categorical feature for sit, and fail to identify hang as the correct relationship.
(d) We overfit to the spatial positioning associated with ride, where objects are typically longer and directly underneath the subject. (e)
Given our image-agnostic features, we produce a reasonable label for <glass - cover - face>. However, our model is incorrect, as two
typically different predicates (sit and cover) share a semantic meaning in the context of <glasses - ? - face>.

that our semi-supervised method outperforms transfer learn-
ing, which has seen more data. Furthermore, we quantify
when our method outperforms transfer learning using our
metric for measuring relationship complexity (Section 3.3).
Eliminating synonyms and supersets. Typically, past
scene graph approaches have used 50 predicates from Visual
Genome to study visual relationships. Unfortunately, these
50 treat synonyms like laying on and lying on as sep-
arate classes. To make matters worse, some predicates can
be considered a superset of others (i.e. above is a superset
of riding). Our method, as well as the baselines, is unable
to differentiate between synonyms and supersets. For the
experiments in this section, we eliminate all supersets and
merge all synonyms, resulting in 20 unique predicates. In the
Supplementary Material we include a list of these predicates
and report our method’s performance on all 50 predicates.
Dataset. We use two standard datasets, VRD [31] and Vi-
sual Genome [27], to evaluate on tasks related to visual
relationships or scene graphs. Each scene graph contains
objects localized as bounding boxes in the image along with
pairwise relationships connecting them, categorized as ac-
tion (e.g., carry), possessive (e.g., wear), spatial (e.g.,
above), or comparative (e.g., taller than) descriptors.
Visual Genome is a large visual knowledge base containing
108K images. Due to its scale, each scene graph is left with
incomplete labels, making it difficult to measure the preci-
sion of our semi-supervised algorithm. VRD is a smaller
but completely annotated dataset. To show the performance
of our semi-supervised method, we measure our method’s
generated labels on the VRD dataset (Section 5.1). Later,
we show that the training labels produced can be used to
train a large scale scene graph prediction model, evaluated
on Visual Genome (Section 5.2).
Evaluation metrics. We measure precision and recall of our
generated labels on the VRD dataset’s test set (Section 5.1).
To evaluate a scene graph model trained on our labels, we
use three standard evaluation modes for scene graph predic-
tion [31]: (i) scene graph detection (SGDET) which expects
input images and predicts bounding box locations, object
categories, and predicate labels, (ii) scene graph classifica-
tion (SGCLS) which expects ground truth boxes and predicts

object categories and predicate labels, and (iii) predicate clas-
sification (PREDCLS), which expects ground truth bounding
boxes and object categories to predict predicate labels. We
refer the reader to the paper that introduced these tasks for
more details [31]. Finally, we explore how relationship
complexity, measured using our definition of subtypes, is
correlated with our model’s performance relative to transfer
learning (Section 5.3).
Baselines. We compare to alternative methods for generat-
ing training labels that can then be used to train downstream
scene graph models. ORACLE is trained on all of Visual
Genome, which amounts to 108⇥ the quantity of labeled
relationships in Dp; this serves as the upper bound for how
well we expect to perform. DECISION TREE [38] fits a single
decision tree over the image-agnostic features, learns from
labeled examples in Dp, and assigns labels to DU . LABEL
PROPAGATION [57] employs a widely-used semi-supervised
method and considers the distribution of image-agnostic
features in DU before propagating labels from Dp to DU .

We compare to a strong frequency baselines: (FREQ) uses
the object counts as priors to make relationship predictions,
and FREQ+OVERLAP increments such counts only if the
bounding boxes of objects overlap. We include a TRANS-
FER LEARNING baseline, which is the de-facto choice for
training models with limited data [15, 52]. However, unlike
all other methods, transfer learning requires a source dataset
to pretrain. We treat the source domain as the remaining
relationships from the top 50 in Visual Genome that do not
overlap with our chosen relationships. We then fine tune
with the limited labeled examples for the predicates in Dp.
We note that TRANSFER LEARNING has an unfair advantage
because there is overlap in objects between its source and
target relationship sets. Our experiments will show that even
with this advantage, our method performs better.
Ablations. We perform several ablation studies for the
image-agnostic features and heuristic aggregation com-
ponents of our model. (CATEG.) uses only categorical
features, (SPAT.) uses only spatial features, (DEEP) uses
only deep learning features extracted using ResNet50 [20]
from the union of the object pair’s bounding boxes,
(CATEG. + SPAT.) uses both categorical concatenated with

Table 2. Results for scene graph prediction tasks with n = 10 labeled examples per predicate, reported as recall@K. A state-of-the-art scene
graph model trained on labels from our method outperforms those trained with labels generated by other baselines, like transfer learning.

Scene Graph Detection Scene Graph Classification Predicate Classification

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

B
as

el
in

es

BASELINE [n = 10] 0.00 0.00 0.00 0.04 0.04 0.04 3.17 5.30 6.61
FREQ 9.01 11.01 11.64 11.10 11.08 10.92 20.98 20.98 20.80
FREQ+OVERLAP 10.16 10.84 10.86 9.90 9.91 9.91 20.39 20.90 22.21
TRANSFER LEARNING 11.99 14.40 16.48 17.10 17.91 18.16 39.69 41.65 42.37
DECISION TREE [38] 11.11 12.58 13.23 14.02 14.51 14.57 31.75 33.02 33.35
LABEL PROPAGATION [57] 6.48 6.74 6.83 9.67 9.91 9.97 24.28 25.17 25.41

A
bl

at
io

ns

OURS (DEEP) 2.97 3.20 3.33 10.44 10.77 10.84 23.16 23.93 24.17
OURS (SPAT.) 3.26 3.20 2.91 10.98 11.28 11.37 26.23 27.10 27.26
OURS (CATEG.) 7.57 7.92 8.04 20.83 21.44 21.57 43.49 44.93 45.50
OURS (CATEG. + SPAT. + DEEP) 7.33 7.70 7.79 17.03 17.35 17.39 38.90 39.87 40.02
OURS (CATEG. + SPAT. + WORDVEC) 8.43 9.04 9.27 20.39 20.90 21.21 45.15 46.82 47.32
OURS (MAJORITY VOTE) 16.86 18.31 18.57 18.96 19.57 19.66 44.18 45.99 46.63
OURS (CATEG. + SPAT.) 17.67 18.69 19.28 20.91 21.34 21.44 45.49 47.04 47.53

ORACLE [nORACLE = 108n] 24.42 29.67 30.15 30.15 30.89 31.09 69.23 71.40 72.15

0ĻĻġēƴƦ�ŸĻ�ŊŭēƞġöƦŊŭļ�ŢöĒġŢġĚ�Ěöƴö 0ĻĻġēƴƦ�ŸĻ�ŊŭēƞġöƦŊŭļ�ƼŭŢöĒġŢġĚ�Ěöƴö

Figure 8. A scene graph model [54] trained using our labels outperforms both using TRANSFER LEARNING labels and using only the
BASELINE labeled examples consistently across scene graph classification and predicate classification for different amounts of available
labeled relationship instances. We also compare to ORACLE, which is trained with 108⇥ more labeled data.

spatial features, (CATEG. + SPAT. + DEEP) combines com-
bines all three, and OURS (CATEG. + SPAT. + WORDVEC)
includes word vectors as richer representations of the cate-
gorical features. (MAJORITY VOTE) uses the categorical
and spatial features but replaces our generative model with a
simple majority voting scheme to aggregate heuristic func-
tion outputs.

5.1. Labeling missing relationships

We evaluate our performance in annotating missing re-
lationships in DU . Before we use these labels to train
scene graph prediction models, we report results compar-
ing our method to baselines in Table 1. On the fully anno-
tated VRD dataset [31], OURS (CATEG. + SPAT.) achieves
57.66 F1 given only 10 labeled examples, which is 17.41,
13.88, and 1.55 points better than LABEL PROPAGATION,
DECISION TREE and MAJORITY VOTE, respectively.
Qualitative error analysis. We visualize labels assigned by
OURS in Figure 7 and find that they correspond to image-
agnostic rules explored in Figure 3. In Figure 7(a), OURS
predicts fly because it learns that fly typically involves

objects that have a large difference in y-coordinate. In
Figure 7(b), we correctly label look because phone is
an important categorical feature. In some difficult cases,
our semi-supervised model fails to generalize beyond the
image-agnostic features. In Figure 7(c), we mislabel hang
as sit by incorrectly relying on the categorical feature
chair, which is one of sit’s important features. In Fig-
ure 7(d), ride typically occurs directly above another ob-
ject that is slightly larger and assumes <book - ride -
shelf> instead of <book - sitting on - shelf>.
In Figure 7(e), our model reasonably classifies <glasses
- cover - face>. However, sit exhibits the same se-
mantic meaning as cover in this context, and our model
incorrectly classifies the example.

5.2. Training Scene graph prediction models

We compare our method’s labels to those generated by
the baselines described earlier by using them to train three
scene graph specific tasks and report results in Table 2. We
improve over all baselines, including our primary baseline,
TRANSFER LEARNING, by 5.16 recall@100 for PREDCLS.

Figure 9. Our method’s improvement over transfer learning (in terms of R@100 for predicate classification) is correlated to the number of
subtypes in the train set (left), the number of subtypes in the unlabeled set (middle), and the proportion of subtypes in the labeled set (right).

We also achieve within 8.65 recall@100 of ORACLE for
SGDET. We generate higher quality training labels than
DECISION TREE and LABEL PROPAGATION, leading to an
13.83 and 22.12 recall@100 increase for PREDCLS.
Effect of labeled and unlabeled data. In Figure 8 (left
two graphs), we visualize how SGCLS and PREDCLS per-
formance varies as we reduce the number of labeled exam-
ples from n = 250 to n = 100, 50, 25, 10. We observe
greater advantages over TRANSFER LEARNING as n de-
creases, with an increase of 5.16 recall@100 PREDCLS
when n = 10. This result matches our observations from
Section 3 because a larger set of labeled examples gives
TRANSFER LEARNING information about a larger propor-
tion of subtypes for each relationship. In Figure 8 (right
two graphs), we visualize our performance as the number
of unlabeled data points increase, finding that we approach
ORACLE performance with more unlabeled examples.
Ablations. OURS (CATEG. + SPAT. + DEEP.) hurts perfor-
mance by up to 7.51 recall@100 for PREDCLS because it
overfits to image features while OURS (CATEG. + SPAT.)
performs the best. We show improvements of 0.71 re-
call@100 for SGDET over OURS (MAJORITYVOTE), indi-
cating that the generated heuristics indeed have different
accuracies and should be weighted differently.

5.3. Transfer learning vs. semi-supervised learning
Inspired by the recent work comparing transfer learn-

ing and semi-supervised learning [36], we characterize
when our method is preferred over transfer learning. Us-
ing the relationship complexity metric based on spatial
and categorical subtypes of each predicate (Section 3),
we show this trend in Figure 9. When the predicate
has a high complexity (as measured by a high num-
ber of subtypes), OURS (CATEG. + SPAT.) outperforms
TRANSFER LEARNING (Figure 9, left), with correlation co-
efficient R2 = 0.778. We also evaluate how the number of
subtypes in the unlabeled set (DU) affects the performance
of our model (Figure 9, center). We find a strong correlation
(R2 = 0.745); our method can effectively assign labels to
unlabeled relationships with a large number of subtypes. We
also compare the difference in performance to the proportion
of subtypes captured in the labeled set (Figure 9, right). As

we hypothesized earlier, TRANSFER LEARNING suffers in
cases when the labeled set only captures a small portion of
the relationship’s subtypes. This trend (R2 = 0.701) ex-
plains how OURS (CATEG. + SPAT.) performs better when
given a small portion of labeled subtypes.

6. Conclusion
We introduce the first method that completes visual

knowledge bases like Visual Genome by finding missing
visual relationships. We define categorical and spatial fea-
tures as image-agnostic features and introduce a factor-graph
based generative model that uses these features to assign
probabilistic labels to unlabeled images. Our method out-
performs baselines in F1 score when finding missing rela-
tionships in the complete VRD dataset. Our labels can also
be used to train scene graph prediction models with minor
modifications to their loss function to accept probabilistic
labels. We outperform transfer learning and other baselines
and come close to oracle performance of the same model
trained on a fraction of labeled data. Finally, we introduce a
metric to characterize the complexity of visual relationships
and show it is a strong indicator of how our semi-supervised
method performs compared to such baselines.

Acknowledgements. This work was partially funded by the
Brown Institute of Media Innovation, the Toyota Research In-
stitute (“TRI”), DARPA under Nos. FA87501720095 and
FA86501827865, NIH under No. U54EB020405, NSF under Nos.
CCF1763315 and CCF1563078, ONR under No. N000141712266,
the Moore Foundation, NXP, Xilinx, LETI-CEA, Intel, Google,
NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson,
Qualcomm, Analog Devices, the Okawa Foundation, and Amer-
ican Family Insurance, Google Cloud, Swiss Re, NSF Graduate
Research Fellowship under No. DGE-114747, Joseph W. and Hon
Mai Goodman Stanford Graduate Fellowship, and members of Stan-
ford DAWN: Intel, Microsoft, Teradata, Facebook, Google, Ant
Financial, NEC, SAP, VMWare, and Infosys. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views, policies, or endorsements, either expressed or
implied, of DARPA, NIH, ONR, or the U.S. Government.

How do we get here?

The common malpractice
OK, time to

write.

work
work
work
coffee
work
work
imposter syndrome
work

Scene Graph Prediction with Limited Labels

Vincent S. Chen, Paroma Varma, Ranjay Krishna, Michael Bernstein, Christopher Ré, Li Fei-Fei
Stanford University

{vincentsc, paroma, ranjaykrishna, msb, chrismre, feifeili}@cs.stanford.edu

Abstract

Visual knowledge bases such as Visual Genome power
numerous applications in computer vision, including visual
question answering and captioning, but suffer from sparse,
incomplete relationships. All scene graph models to date
are limited to training on a small set of visual relationships
that have thousands of training labels each. Hiring human
annotators is expensive, and using textual knowledge base
completion methods are incompatible with visual data. In
this paper, we introduce a semi-supervised method that as-
signs probabilistic relationship labels to a large number of
unlabeled images using few labeled examples. We analyze
visual relationships to suggest two types of image-agnostic
features that are used to generate noisy heuristics, whose out-
puts are aggregated using a factor graph-based generative
model. With as few as 10 labeled examples per relation-
ship, the generative model creates enough training data to
train any existing state-of-the-art scene graph model. We
demonstrate that our method outperforms all baseline ap-
proaches on scene graph prediction by 5.16 recall@100
for PREDCLS. In our limited label setting, we define a
complexity metric for relationships that serves as an indi-
cator (R2 = 0.778) for conditions under which our method
succeeds over transfer learning, the de-facto approach for
training with limited labels.

1. Introduction
In an effort to formalize a structured representation for

images, Visual Genome [27] defined scene graphs, a for-
malization similar to those widely used to represent knowl-
edge bases [13, 18, 56]. Scene graphs encode objects (e.g.
person, bike) as nodes connected via pairwise relation-
ships (e.g., riding) as edges. This formalization has led
to state-of-the-art models in image captioning [3], image
retrieval [25, 42], visual question answering [24], relation-
ship modeling [26] and image generation [23]. However,
all existing scene graph models ignore more than 98% of
relationship categories that do not have sufficient labeled
instances (see Figure 2) and instead focus on modeling the

$Q\�H[LVWLQJ�
VFHQH�JUDSK�

PRGHO

2XU�VHPL�
VXSHYLVHG�
PHWKRG

3UREDELOLVWLF�WUDLQLQJ�ODEHOV�/LPLWHG�ODEHOV

8QODEHOHG�LPDJHV
(DW������

(DW�����

(DW������

(DW�����

Figure 1. Our semi-supervised method automatically generates
probabilistic relationship labels to train any scene graph model.

few relationships that have thousands of labels [31, 49, 54].
Hiring more human workers is an ineffective solution to

labeling relationships because image annotation is so tedious
that seemingly obvious labels are left unannotated. To com-
plement human annotators, traditional text-based knowledge
completion tasks have leveraged numerous semi-supervised
or distant supervision approaches [6, 7, 17, 34]. These meth-
ods find syntactical or lexical patterns from a small labeled
set to extract missing relationships from a large unlabeled
set. In text, pattern-based methods are successful, as relation-
ships in text are usually document-agnostic (e.g. <Tokyo
- is capital of - Japan>). Visual relationships are
often incidental: they depend on the contents of the partic-
ular image they appear in. Therefore, methods that rely on
external knowledge or on patterns over concepts (e.g. most
instances of dog next to frisbee are playing with it)
do not generalize well. The inability to utilize the progress
in text-based methods necessitates specialized methods for
visual knowledge.

In this paper, we automatically generate missing rela-
tionships labels using a small, labeled dataset and use these
generated labels to train downstream scene graph models
(see Figure 1). We begin by exploring how to define image-
agnostic features for relationships so they follow patterns
across images. For example, eat usually consists of one
object consuming another object smaller than itself, whereas
look often consists of common objects: phone, laptop,
or window (see Figure 3). These rules are not dependent on
raw pixel values; they can be derived from image-agnostic
features like object categories and relative spatial positions
between objects in a relationship. While such rules are sim-
ple, their capacity to provide supervision for unannotated
relationships has been unexplored. While image-agnostic

1

ar
X

iv
:1

90
4.

11
62

2v
2

 [c
s.C

V
]

20
 A

ug
 2

01
9

Why is this malpractice? [1min with a partner]
Research papers are complex documents, with too many degrees of
freedom to “just write”. Being strategic will save time and avoid dead ends.

…so what do we do instead?

There are many genres
Even within areas, there exist many different genres of paper. Each
genre is typically built around the claim you are making, and implies
a structure to the sections and to the writing. For example:

7

We solve a problem:
articulate the problem,
explain what causes that
problem and what others
have done to deal with it,
detail your approach, and
prove that you make
progress on the problem

We measure an
outcome: explain that
nobody has bothered
understanding how a
phenomenon behaves,
explain how to create a
study that sheds light, and
report the outcomes of it

We introduce a
technique: articulate a
problem as above, but
focus the narrative on the
technique you’ve created,
since it will generalize

Genres imply structure
Common “We Solve A Problem” structure:

Introduction: overview and thesis
Related Work: situate your contribution relative to prior research
Approach: describe your approach and important implementation details
Evaluation: test whether your approach succeeds at its stated goals

Method

Results

Discussion: reflect on limitations, implications, and future work
Conclusion: summarize and restate your contribution 8

But, this will vary

by area!

“Which genre is our project?”
You can often derive the appropriate genre in the same way that
you derived the evaluation — what is the thesis and claim that you
are supporting?
But this may be challenging until you’ve read a large number of
papers. So instead…

9

Model papers
A model paper is a paper that you can use as a model or
template for constructing your paper.

You should be able to structure your paper in the same way as your
model paper

Follow its general flow of argument in the introduction
Use similar section and subsection heading organization
Create figures, tables, and graphs that fulfill the same function as theirs
Apply the same general proportions, e.g., number of pages per section

10

Selecting your model paper
Model paper != nearest neighbor paper
The model paper should be a paper that makes the same type of
argument as yours. It should be in the same genre as you seek.

Often the nearest neighbor paper will make a similar form of argument,
but not necessarily
Often the nearest neighbor paper will be a well-written paper,
but not necessarily

Find your model paper and share it with your TA for a thumbs up
before writing.

11

From model to paper
Start by outlining the model paper.

How does it structure its argument into sections?
What is the main expository goal of each section? What is its sub-thesis?
What role does each figure play?

12

From model to paper
Next, build a mapping from their outline to yours.

Translate each section and sub-section heading into what the equivalent
heading is for you
Translate each sub-thesis into what the equivalent sub-thesis is for you
Translate each figure into what the equivalent figure is for you

13

What if it doesn’t quite fit?
Model papers should be templates, not straightjackets. You will
probably need to adapt your mapping slightly from what your
model paper does.

e.g., you require a slightly different evaluation structure or visualization
than them
e.g., you’re drawing on a different literature than them, and need to
explain something that they didn’t

You can play with the genre — just don’t discard the genre. Check
with your TA for any substantial changes that you want to make.

14

Research career paths

“OK, so I took CS 197, now
what?”
What can you do after Stanford?
What can you do at Stanford?

16

Pathways for research

17

Research
is interesting

Professor

Research scientist in industry

Entrepreneur

Engineer / Engineering Lead

(we’ll unpack this part
in a moment)

Professor
Work on research that you and the field find interesting.
Recruit the best rising talent in the world and mentor them.
Teach in your area of expertise.
Typical goals:

Do research and have impact (e.g., publications, software adoption)
Graduate amazing students
Inspire students to learn about your area
Room for personalization: entrepreneurship, speaking, consulting, &etc.

18

Research scientist
Join a company’s research division and work on research from
within the company. Examples: Microsoft Research, FAIR, nVidia
Research, Google Brain
Typical goals:

Do research and have impact (but more focus on translation to the
company’s products and less on publication)
Create innovations that transform the company you’re working for
(e.g., Kinect, BERT, TPUs)

19

Entrepreneur
Start your own company, often based on the research you’re doing,
and grow it.
Typical goals:

Scale your ideas and make them available to millions of people
Start a new industry: your start-up is not a “me too” startup. Typically, it’s
pitching a dramatically new angle.
Little focus on doing research in the short term

20

Engineer / Engineering Lead
Join a company and apply your skills toward the development of
product
Typical goals:

Be the company’s expert in an area, and potentially grow a team to drive
product in that space
Typically, these jobs are for types of levels of expertise and experience
that cannot be acquired through a BS or MS
Little focus on doing research in the short term

21

What’s the distribution?
I looked into this! I scraped names of all Ph.D. graduates in
Computer Science from Stanford, MIT, and UC Berkeley.
I then mapped the names onto LinkedIn pages (yes, LinkedIn
availability adds bias, but we found about 75% of people)
Tag their jobs on their LinkedIn:

Faculty: job titles including words such as "faculty" or "professor"
Entrepreneurship: triggered by titles such as "founder" or “partner"
Research scientist: titles such as "researcher" or "scientist" (natch)
Engineer: titles such as "programmer" or "architect" 22

23

No statistically
significant
difference

No statistically
significant
difference

No statistically
significant
difference

Percentages add up to more than 100% because people can hold more than one
position. Entrepreneurs and research scientists are a common mix. Faculty, likewise, can
sometimes jump into industry research or start a company.

Pathways for research

24

Professor

Research scientist in industry

Entrepreneur

Engineer / Engineering Lead

Research
is interesting

(we’ll unpack this part
in a moment)

Pathways for research

25

Professor

Research scientist in industry

Entrepreneur

Engineer / Engineering Lead

Academic year
research

Summer CURIS
internship

BS with honors

Research
is interesting

Academic year research
Get units for doing research with a faculty member

Generally, start with CS 195, which fulfills the CS Senior Project
requirement, then go on to CS 199
How to get started? Talk to your TA about possible faculty to approach,
and we can help facilitate an introduction.
Typically, you’ll get involved in a project ongoing in the lab

26

Summer CURIS research
Apply your full effort toward a fun research project for the summer

Get mentored by a faculty member and PhD student
Get paid
No need to balance the project against classes
Live on campus

Typically, you join a project that’s ongoing in the faculty member’s
lab
Apply early in winter quarter at curis.stanford.edu

27

http://curis.stanford.edu

BS with honors
Receive a special designation on your diploma (“BS with honors”)
Engage in a yearlong research project your senior year

Takes the place of the senior project
Typically, you do this with faculty who you’ve already been working with

Apply in the spring of your junior year

28

Pathways for research

29

Professor

Research scientist in industry

Entrepreneur

Engineer / Engineering Lead

Academic year
research

Summer CURIS
internship

BS with honors

Research
is interesting

Pathways for research

30

Professor

Research scientist in industry

Entrepreneur

Engineer / Engineering Lead

Academic year
research

Summer CURIS
internship

BS with honors

Research
is interesting Ph.D.

All of you can succeed
at a PhD!
A Ph.D. is a grown-up version of the research you do as an
undergraduate or master’s student. You get much more control over
the projects you are working on, and become first author on the
resulting publication.
It’s challenging because we doubt ourselves constantly. But you also
earn the ability to tackle any complex problem.
Cool side benefit: become Dr. [Lastname]

31

How do I get in to a Ph.D.?
The most important criteria for getting into a Ph.D. program is
demonstrated interest and ability to do research.
“How do I demonstrate interest and ability?”

32

Do research!

How do I get in to a Ph.D.?
In your statement, talk about research you did and the impact you
had on the project. (You can include your CS 197 class project in it!)
You will want three recommendation letters from people with
Ph.D.s to support your case.

Typically, one is the faculty you worked most closely with on research.
The other two can be supporting letters, or other research mentors.
available.

33

What questions
do you have?

Assignment 8: draft paper
Work together with your team to write a draft paper. This should
be a complete draft in the template format of your research, and
include reviewable drafts of every section.

“Can we include text we already wrote?” Absolutely! + tweaks
“Do we need the results of our evaluation?” Yes, but you can continue to
update your results through the final presentations.
“What if our project doesn’t work out?” Still write up the report.
Negative results can be valuable. Unpack in Discussion what it was about
your idea or assumptions that wasn’t borne out.

Next week, we’ll be doing mock peer review of your draft papers! 35

Slide content shareable under a Creative Commons Attribution-
NonCommercial 4.0 International License.

36

Writing a Paper
& Research Career Paths

