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Abstract

knowledge bases such as Visual Genome power
applications in computer vision, including visual
mswering and captioning, but suffer from sparse,
e relationships. All scene graph models to date
1 to training on a small set of visual relationships
thousands of training labels each. Hiring human
s is expensive, and using textual knowledge base
n methods are incompatible with visual data. In
. we introduce a semi-supervised method that as-
abilistic relationship labels to a large number of
‘images using few labeled examples. We analyze
itionships to suggest two types of image-agnostic
at are used to generate noisy heuristics, whose out-
ggregated using a factor graph-based generative
ith as few as 10 labeled examples per relation-
enerative model creates enough training data to
existing state-of-the-art scene graph model. We
ite that our method outperforms all baseline ap-
on scene graph prediction by 5.16 recall@ 100
YCLS. In our limited label setting, we define a
y metric for relationships that serves as an indi-
= 0.778) for conditions under which our method
over transfer learning, the de-facto approach for
ith limited labels.

duction

ffort to formalize a structured representation for
isual Genome [27] defined scene graphs, a for-
1 similar to those widely used to represent knowl-
s [13,18,56]. Scene graphs encode objects (e.g.
bike) as nodes connected via pairwise relation-
, riding) as edges. This formalization has led
-the-art models in image captioning [3], image
25,42], visual question answering [24], relation-
ling [26] and image generation [23]. However,
g scene graph models ignore more than 98% of
ip categories that do not have sufficient labeled
(see Figure 2) and instead focus on modeling the
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Figure 1. Our semi-supervised method automatically generates
probabilistic relationship labels to train any scene graph model.

few relationships that have thousands of labels [31,49,54].

Hiring more human workers is an ineffective solution to
labeling relationships because image annotation is so tedious
that seemingly obvious labels are left unannotated. To com-
plement human annotators, traditional text-based knowledge
completion tasks have leveraged numerous semi-supervised
or distant supervision approaches [0, 7, 17,34]. These meth-
ods find syntactical or lexical patterns from a small labeled
set to extract missing relationships from a large unlabeled
set. In text, pattern-based methods are successful, as relation-
ships in text are usually document-agnostic (e.g. <Tokyo
-is capital of - Japan>). Visual relationships are
often incidental: they depend on the contents of the partic-
ular image they appear in. Therefore, methods that rely on
external knowledge or on patterns over concepts (e.g. most
instances of dog nextto frisbeeareplaying withit)
do not generalize well. The inability to utilize the progress
in text-based methods necessitates specialized methods for
visual knowledge.

In this paper, we automatically generate missing rela-
tionships labels using a small, labeled dataset and use these
generated labels to train downstream scene graph models
(see Figure 1). We begin by exploring how to define image-
agnostic features for relationships so they follow patterns
across images. For example, eat usually consists of one
object consuming another object smaller than itself, whereas
look often consists of common objects: phone, laptop,
or window (see Figure 3). These rules are not dependent on
raw pixel values; they can be derived from image-agnostic
features like object categories and relative spatial positions
between objects in a relationship. While such rules are sim-
ple, their capacity to provide supervision for unannotated
relationships has been unexplored. While image-agnostic
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or a relationship (e.g., carry), we use image-agnostic features to automatically create heuristics and then use a generative model

‘obabilistic labels to a large unlabeled set of images. These

ostic rules are threshold-based conditions that are
lly defined by the decision tree. To limit the com-
these heuristics and thereby prevent overfitting, we
w decision trees [38] with different restrictions on
r each feature set to produce J different decision
hen predict labels for the unlabeled set using these
‘producing a A € R7*IPvl matrix of predictions
labeled relationships.
ver, we only use these heuristics when they have
dence about their label; we modify A by converting
cted label with confidence less than a threshold
ly chosen to be 2x random) to an abstain, or no
onment. An example of a heuristic is shown in
if the subject is above the object, it assigns a
bel for the predicate carry.
‘e model: These heuristics, individually, are noisy
10t assign labels to all object pairs in Dyy. As a
aggregate the labels from all J heuristics. To do so,
e a factor graph-based generative model popular
ed weak supervision techniques [1,39,41,45,48].

Lo =Eyr [log (1 +exp(—0" V'Y))]

where 6 is the learned parameters, 7 is the distribution
learned by the generative model, Y is the true label, and V'
are features extracted by any scene graph prediction model.
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Figure 2. Visual relationships have a long tail (left) of infrequent relationships. Current models [49, 54] only focus on the top 50 relationships
(middle) in the Visual Genome dataset, which all have thousands of labeled instances. This ignores more than 98% of the relationships with

few labeled instances (right, top/table).

features can characterize some visual relationships very well,
they might fail to capture complex relationships with high
variance. To quantify the efficacy of our image-agnostic
features, we define “subtypes” that measure spatial and cate-
gorical complexity (Section 3).

Based on our analysis, we propose a semi-supervised ap-
proach that leverages image-agnostic features to label miss-
ing relationships using as few as 10 labeled instances of each
relationship. We learn simple heuristics over these features
and assign probabilistic labels to the unlabeled images using
a generative model [39,46]. We evaluate our method’s label-
ing efficacy using the completely-labeled VRD dataset [31]
and find that it achieves an F1 score of 57.66, which is 11.84
points higher than other standard semi-supervised methods
like label propagation [57]. To demonstrate the utility of
our generated labels, we train a state-of-the-art scene graph
model [54] (see Figure 6) and modify its loss function to
support probabilistic labels. Our approach achieves 47.53
recall@100" for predicate classification on Visual Genome,
improving over the same model trained using only labeled
instances by 40.97 points. For scene graph detection, our ap-
proach achieves within 8.65 recall @ 100 of the same model
trained on the original Visual Genome dataset with 108 x
more labeled data. We end by comparing our approach to
transfer learning, the de-facto choice for learning from lim-
ited labels. We find that our approach improves by 5.16
recall@100 for predicate classification, especially for re-
lationships with high complexity, as it generalizes well to
unlabeled subtypes.

Our contributions are three-fold. (1) We introduce the
first method to complete visual knowledge bases by finding
missing visual relationships (Section 5.1). (2) We show the
utility of our generated labels in training existing scene graph
prediction models (Section 5.2). (3) We introduce a metric to
characterize the complexity of visual relationships and show
it is a strong indicator (R? = (0.778) for our semi-supervised
method’s improvements over transfer learning (Section 5.3).

IRecall @ K is a standard measure for scene graph prediction [31].

<shirt-sit-chair>

2. Related work

Textual knowledge bases were originally hand-curated by
experts to structure facts [4,5,44] (e.g. <Tokyo-capital
of - Japan>). To scale dataset curation efforts, recent
approaches mine knowledge from the web [9] or hire non-
expert annotators to manually curate knowledge [5,47]. In
semi-supervised solutions, a small amount of labeled text is
used to extract and exploit patterns in unlabeled sentences [2,
21,33-35,37]. Unfortunately, such approaches cannot be
directly applied to visual relationships; textual relations can
often be captured by external knowledge or patterns, while
visual relationships are often local to an image.

Visual relationships have been studied as spatial priors [14,
16], co-occurrences [51], language statistics [28,31,53], and
within entity contexts [29]. Scene graph prediction mod-
els have dealt with the difficulty of learning from incom-
plete knowledge, as recent methods utilize statistical mo-
tifs [54] or object-relationship dependencies [30,49, 50, 55].
All these methods limit their inference to the top 50 most
frequently occurring predicate categories and ignore those
without enough labeled examples (Figure 2).

The de-facto solution for limited label problems is trans-
fer learning [15,52], which requires that the source domain
used for pre-training follows a similar distribution as the
target domain. In our setting, the source domain is a dataset
of frequently-labeled relationships with thousands of exam-
ples [30,49,50,55], and the target domain is a set of limited
label relationships. Despite similar objects in source and
target domains, we find that transfer learning has difficulty
generalizing to new relationships. Our method does not rely
on availability of a larger, labeled set of relationships; in-
stead, we use a small labeled set to annotate the unlabeled
set of images.

To address the issue of gathering enough training la-
bels for machine learning models, data programming has
emerged as a popular paradigm. This approach learns to
model imperfect labeling sources in order to assign train-
ing labels to unlabeled data. Imperfect labeling sources
can come from crowdsourcing [10], user-defined heuris-
tics [8,43], multi-instance learning [22,40], and distant su-
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Figure 7. (a) Heuristics based on spatial features help predict <man - £1y - kite>. (b) Our model learns that 1ook is highly correlated
with phone. (c) We overfit to the importance of chair as a categorical feature for sit, and fail to identify hang as the correct relationship.
(d) We overfit to the spatial positioning associated with ride, where objects are typically longer and directly underneath the subject. (e)
Given our image-agnostic features, we produce a reasonable label for <glass - cover - face>. However, our model is incorrect, as two
typically different predicates (sit and cover) share a semantic meaning in the context of <glasses - ? - face>.

that our semi-supervised method outperforms transfer learn-
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relationships or scene graphs. Each scene graph contains
objects localized as bounding boxes in the image along with
pairwise relationships connecting them, categorized as ac-
tion (e.g., carry), possessive (e.g., wear), spatial (e.g.,
above) or comparative (eo +aller than) descrintors

object categories and predicate labels, and (iii) predicate clas-
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Figure 3. Relationships, such as 1y, eat, and sit can be characterized effectively by their categorical (s and o refer to subject and object,
respectively) or spatial features. Some relationships like £1y rely heavily only on a few features — kites are often seen high up in the sky.

pervision [12,32]. Often, these imperfect labeling sources
take advantage of domain expertise from the user. In our
case, imperfect labeling sources are automatically generated
heuristics, which we aggregate to assign a final probabilistic
label to every pair of object proposals.

3. Analyzing visual relationships

We define the formal terminology used in the rest of the
paper and introduce the image-agnostic features that our
semi-supervised method relies on. Then, we seek quantita-
tive insights into how visual relationships can be described
by the properties between its objects. We ask (1) what image-
agnostic features can characterize visual relationships? and
(2) given limited labels, how well do our chosen features
characterize the complexity of relationships? With these in
mind, we motivate our model design to generate heuristics
that do not overfit to the small amount of labeled data and
assign accurate labels to the larger, unlabeled set.

3.1. Terminology

A scene graph is a multi-graph G that consists of objects
o as nodes and relationships 7 as edges. Each object 0; =
{bs, ¢; } consists of a bounding box b; and its category ¢; €
C where C is the set of all possible object categories (e.g.
dog, frisbee). Relationships are denoted <subject
- predicate - object>or<o-p-0>. p € Pisa
predicate, such as ride and eat. We assume that
we have a small labeled set {(0,p,0’) € D,} of annotated
relationships for each predicate p. Usually, these datasets
are on the order of a 10 examples or fewer. For our semi-
supervised approach, we also assume that there exists a large
set of images Dy without any labeled relationships.

3.2. Defining image-agnostic features

It has become common in computer vision to utilize pre-
trained convolutional neural networks to extract features
that represent objects and visual relationships [3 1,49, 50].
Models trained with these features have proven robust in
the presence of enough training labels but tend to overfit
when presented with limited data (Section 5). Consequently,
an open question arises: what other features can we utilize

to label relationships with limited data? Previous literature
has combined deep learning features with extra information
extracted from categorical object labels and relative spatial
object locations [25,31]. We define categorical features,
< 0,—,0' >, as a concatenation of one-hot vectors of the
subject o and object o’. We define spatial features as:

r—a y—vy (y+h)— (@ +h)

w ~ h h ’
(z+w)— (@ +w) b o wh' w+H
w "hTw’ wh w+h

where b = [y, x, h,w] and ' = [¢/,2', h/,w'] are the top-
left bounding box coordinates and their widths and heights.
To explore how well spatial and categorical features can
describe different visual relationships, we train a simple
decision tree model for each relationship. We plot the im-
portances for the top 4 spatial and categorical features in
Figure 3. Relationships like £1y place high importance on
the difference in y-coordinate between the subject and object,
capturing a characteristic spatial pattern. 1 ook, on the other
hand, depends on the category of the objects (e.g. phone,
laptop, window) and not on any spatial orientations.

3.3. Complexity of relationships

To understand the efficacy of image-agnostic features,
we’d like to measure how well they can characterize the
complexity of particular visual relationships. As seen in
Figure 4, a visual relationship can be defined by a number of
image-agnostic features (e.g. a person can ride a bike, or
a dog can ride a surfboard). To systematically define this
notion of complexity, we identify subtypes for each visual
relationship. Each subtype captures one way that a relation-
ship manifests in the dataset. For example, in Figure 4, ride
contains one categorical subtype with <person - ride -
bike> and another with <dog - ride - surfboard>.
Similarly, a person might carry an object in different rela-
tive spatial orientations (e.g. on her head, to her side). As
shown in Figure 5, visual relationships might have signifi-
cantly different degrees of spatial and categorical complex-
ity, and therefore a different number of subtypes for each.
To compute spatial subtypes, we perform mean shift clus-
tering [1 1] over the spatial features extracted from all the

Table 2. Results for scene graph prediction tasks with n = 10 labeled examples per predicate, reported as recall@K. A state-of-the-art scene
graph model trained on labels from our method outperforms those trained with labels generated by other baselines, like transfer learning.

Scene Graph Detection

Scene Graph Classification Predicate Classification

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100
BASELINE [n = 10] 0.00 0.00 0.00 0.04 0.04 0.04 3.17 5.30 6.61
% FREQ 9.01 11.01 11.64 11.10  11.08 10.92 20.98  20.98 20.80
.5 FREQ+OVERLAP 10.16  10.84 10.86 9.90 9.91 9.91 20.39  20.90 22.21
§ TRANSFER LEARNING 11.99 1440 16.48 17.10 1791 18.16 39.69 41.65 42.37
A DECISION TREE [38] 11.11 12.58 13.23 14.02  14.51 14.57 31.75  33.02 33.35
LABEL PROPAGATION [57] 6.48 6.74 6.83 9.67 9.91 9.97 2428  25.17 25.41
OuRs (DEEP) 2.97 3.20 3.33 1044  10.77 10.84 23.16 2393 2417
OURS (SPAT.) 3.26 3.20 291 1098 11.28 11.37 26.23  27.10 27.26
é’ OURS (CATEG.) 7.57 7.92 8.04 20.83 21.44 21.57 43.49 4493 45.50
‘S Nrpcec (CATE~ 1 QpaT 1 Noop) 72 77N 770 17 N 17 2%8 17 20 2Q AN 20 Q7 AN ND

labeled relationship instances. We also compare to ORACLE, which is trained with 108 x more labeled data.

How do we get here!?

spatial features, (CATEG. + SPAT. + DEEP) combines com-
bines all three, and OURS (CATEG. + SPAT. + WORDVEC)
includes word vectors as richer representations of the cate-

objects that have a large difference in y-coordinate. In
Figure 7(b), we correctly label 1ook because phone is
an important categorical feature. In some difficult cases,

Lategorical compiexity 1or riae:

ride can be expressed as <person - ride - bike> while another is <dog - ride - surfboard>. Subtyj
carry has a subtype with a small object carried to the side and another with a large object carried overhead.
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Figure 5. A subset of visual relationships with different levels of complexity as defined by spatial and categorical
we show how this measure is a good indicator of our semi-supervised method’s effectiveness compared to baselin

relationships in Visual Genome. To compute the categorical
subtypes, we count the number of unique object categories
associated with a relationship.

With access to 10 or fewer labeled instances for these
visual relationships, it is impossible to capture all the sub-
types for given relationship and therefore difficult to learn a
good representation for the relationship as a whole. Conse-
quently, we turn to the rules extracted from image-agnostic
features and use them to assign labels to the unlabeled data
in order to capture a larger proportion of subtypes in each
visual relationship. We posit that this will be advantageous
over methods that only use the small labeled set to train a
scene graph prediction model, especially for relationships
with high complexity, or a large number of subtypes. In
Section 5.3, we find a correlation between our definition of
complexity and the performance of our method.

4. Approach

We aim to automatically generate labels for missing visual
relationships that can be then used to train any downstream
scene graph prediction model. We assume that in the long-
tail of infrequent relationships, we have a small labeled
set {(o0,p,0") € D,} of annotated relationships for each
predicate p (often, on the order of a 10 examples or less). As
discussed in Section 3, we want to leverage image-agnostic
features to learn rules that annotate unlabeled relationships.

Our approach assigns probabilistic labels to a set Dy; of
un-annotated images in three steps: (1) we extract image-
agnostic features from the objects in the labeled D,, and

Improvement vs. Subtypes

R@100 Ours
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L]

Algorithm 1 Semi-supervised Alg. tc
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12: OUTPUT: SGM(-)
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Scene Graph Prediction with Limited Labels
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Abstract

Visual knowledge bases such as Visual Genome power
numerous applications in computer vision, including visual
question answering and captioning, but suffer from sparse,
incomplete relationships. All scene graph models to date
are limited to training on a small set of visual relationships
that have thousands of training labels each. Hiring human
annotators is expensive, and using textual knowledge base
completion methods are incompatible with visual data. In
this paper, we introduce a semi-supervised method that as-
signs probabilistic relationship labels to a large number of
unlabeled images using few labeled examples. We analyze
visual relationships to suggest two types of image-agnostic
features that are used to generate noisy heuristics, whose out-
puts are aggregated using a factor graph-based generative
model. With as few as 10 labeled examples per relation-
ship, the generative model creates enough training data to
train any existing state-of-the-art scene graph model. We
demonstrate that our method outperforms all baseline ap-
proaches on scene graph prediction by 5.16 recall@100
for PREDCLS. In our limited label setting, we define a
complexity metric for relationships that serves as an indi-
cator (R* = 0.778) for conditions under which our method
succeeds over transfer learning, the de-facto approach for
training with limited labels.

1. Introduction

In an effort to formalize a structured representation for
images, Visual Genome [27] defined scene graphs, a for-
malization similar to those widely used to represent knowl-
edge bases [13, 18,56]. Scene graphs encode objects (e.g.
person, bike) as nodes connected via pairwise relation-
ships (e.g., riding) as edges. This formalization has led
to state-of-the-art models in image captioning [3], image
retrieval [25,42], visual question answering [24], relation-
ship modeling [26] and image generation [23]. However,
all existing scene graph models ignore more than 98% of
relationship categories that do not have sufficient labeled
instances (see Figure 2) and instead focus on modeling the

aAVOIC

.stanford.edu

Limited labels

sl

Unlabeled images
- 1

Probabilistic training labels

Eat: 0.35
Our semi- Any existing

supevised ——» scene graph
L N method model
13- |
PRE 43
Figure 1. Our semi-supervised method automatically generates
probabilistic relationship labels to train any scene graph model.

few relationships that have thousands of labels [31,49,54].

Hiring more human workers is an ineffective solution to
labeling relationships because image annotation is so tedious
that seemingly obvious labels are left unannotated. To com-
plement human annotators, traditional text-based knowledge
completion tasks have leveraged numerous semi-supervised
or distant supervision approaches [6,7, 17,34]. These meth-
ods find syntactical or lexical patterns from a small labeled
set to extract missing relationships from a large unlabeled
set. In text, pattern-based methods are successful, as relation-
ships in text are usually document-agnostic (e.g. <Tokyo
-is capital of - Japan>). Visual relationships are
often incidental: they depend on the contents of the partic-
ular image they appear in. Therefore, methods that rely on
external knowledge or on patterns over concepts (e.g. most
instances of dog nextto frisbee are playing withit)
do not generalize well. The inability to utilize the progress
in text-based methods necessitates specialized methods for
visual knowledge.

In this paper, we automatically generate missing rela-
tionships labels using a small, labeled dataset and use these
generated labels to train downstream scene graph models
(see Figure 1). We begin by exploring how to define image-
agnostic features for relationships so they follow patterns
across images. For example, eat usually consists of one
object consuming another object smaller than itself, whereas
look often consists of common objects: phone, laptop,
or window (see Figure 3). These rules are not dependent on
raw pixel values; they can be derived from image-agnostic
features like object categories and relative spatial positions
between objects in a relationship. While such rules are sim-
ple, their capacity to provide supervision for unannotated
relationships has been unexplored. While image-agnostic
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We solve a problem:
articulate the problem,
explain what causes that
broblem and what others
nave done to deal with It
detall your approach, anad
brove that you make
brogress on the problem

We measure an

We introduce a

outcome: explain that technique: articulate a
nobody has bothered broblem as above, but
understanding how a focus the narrative on the
phenomenon behaves, technigue you've created,
explain how to create a since 1t will generalize
study that sheds light, anc

report the outcomes of It




Genres imply structure

Common “We Solve A Problem” structure: B"l) ths

by

. . . Wy
Introduction: overview and thesis area,/ " Va,.},
Related Work: situate your contribution relative to prior research

Approach: describe your approach and important implementation details

~valuation: test whether your approach succeeds at 1ts stated goals

MISiglele

Results
Discussion: reflect on limitations, implications, and future work

Conclusion: summarize and restate your contribution :



“Which genre is our project?”

You can often derive the appropriate genre In the same way that

you derived the evaluation — what Is the thesis and claim that you
are supporting!

But this may be challenging until you've read a large number of
papers. So Instead...



Model papers

A model paper is a paper that you can use as a model or
template for constructing your paper.

You should be able to structure your paper in the same way as your
model paper

Follow Its general flow of argument in the introduction

Use similar section and subsection heading organization

Create figures, tables, and graphs that fulfill the same function as theirs

Apply the same general proportions, e.g., number of pages per section



Selecting your model paper

Model paper != nearest neighbor paper

The model paper should be a paper that makes the same type of
arsument as yours. It should be In the same genre as you seek.

Often the nearest neighbor paper will make a similar form of argument,
but not necessarily

Often the nearest neighbor paper will be a well-written paper,
but not necessarily

Find your model paper and share 1t with your A for a thumbs up
before writing.




From model to paper

Start by outlining the model paper.

ow does It structure Its argsument into sections?
What Is the main expository goal of each section! What is 1ts sub-thesis?

What role does each figure play?



From model to paper

Next, build a mapping from their outline to yours.

[ranslate each section and sub-section heading into what the equivalent
heading Is for you

Translate each sub-thesis into what the equivalent sub-thesis Is for you

Translate each figure Into what the equivalent figure Is for you




What if it doesn’t quite fit?

Model papers should be templates, not straightjackets. You will
probably need to adapt your mapping slightly from what your
model paper does.

e.g.,, You reguire a slightly different evaluation structure or visualization
than them

e.g,, youre drawing on a different Iiterature than them, and need to
explain something that they didn't

You can play with the genre — just don't discard the genre. Check
with your [A for any substantial changes that you want to make.



Research career paths



“OK, so | took CS 197, now
what?”

What can you do after Stanford?
What can you do at Stanford!



Pathways for research

Professor

Research scientist In industry
Research ﬁ
S Interesting

(we'll unpack this part
N a moment)

Entrepreneur

Engineer / Engineering Lead



Professor

Work on research that you and the field find interesting,
Recrult the best rising talent in the world and mentor them.
Teach In your area of expertise.
lypical goals:
Do research and have impact (e.g., publications, software adoption)
Graduate amazing students

Inspire students to learn about your area

Room for personalization: entrepreneurship, speaking, consulting, &etc.



Research scientist

Join a company's research division and work on research from

within the com

Research, Google Brain

lypical goals:

Do research and have impact (but
company's products and less on pu

Create iInnovat

(e.g., Kinect,

Sk

O

%

°Us)

bany. Examples: Microsoft Research, FAIR, nVidia

Mmore focus on translation to the

olication)

ns that transform the company you're working for



Entrepreneur

Start your own company, often based on the research you're doing,
and grow It.

lypical goals:

Scale your ideas and make them available to millions of people

Start a new Industry: your start-up 1s not a “me too’ startup. lypically, it's
pitching a dramatically new angle.

Little focus on doing research in the short term

20



Engineer / Engineering Lead

Join a company and apply your skills toward the development of

DIroduct

lypical goals:

Be the company's expert in an area, and potentially grow a team to drive
product In that space

Typically, these jobs are for types of levels of expertise and experience

that cannot be acc

uirec

through a

3S or MS

Little focus on doing research in the short term

2|



What'’s the distribution!?

| looked Into this! | scraped names of all Ph.D. graduates in
Computer Science from Stanford, MIT, and UC Berkeley.

| then mapped the names onto LinkedIn pages (yes, LinkedIn
avallability adds bias, but we found about /5% of people)

lag their jobs on their LinkedIn:

Faculty: job titles including words such as "faculty” or "professor”

“ntrepreneurship: triggered by titles such as "founder” or “partner

Research scientist: titles such as "researcher” or "scientist” (natch)

-ngineer: titles such as "programmer” or "architect’

22



(Graduates 2006-2017
60%

: . 4000
" HER Has I
o =

Professor Entrep reneur Scientist Engineer

areer | ype

C

% of (Graduaets Holding

B Stanford ®MIT ™ Berkeley

No statistically No statistically No statistically
significant significant significant
difference difference difference

Percentages add up to more than [00% because people can hold more than one
posItion. Entrepreneurs and research scientists are a common mix. Faculty, likewise, can
sometimes jJump Into Industry research or start a company.




Pathways for research

Professor

Research scientist In industry
Research ﬁ
S Interesting

(we'll unpack this part
N a moment)

Entrepreneur

Engineer / Engineering Lead
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Pathways for research

Academic year
F@SeaFCh Professor

Summer CURIS »

|ﬂte I"ﬂSh | p Entrepreneur

Engineer / Engineering Lead

Research
S Interesting

Research scientist in industry

-

BS with honors

25



Academic year research

Get units for doing research with a faculty member

Generally, start with CS 195, which fulfills the CS Senior Project
requirement, then go on to CS 99

How to get started! lalk to your TA about possible faculty to approach,
and we can help facilitate an introduction.

Typically, you'll get involved in a project ongoing in the lab

PAS



Summer CURIS research

Apply your full effort toward a fun research project for the summer

Get mentored by a faculty member and PhD student
Get paid
No need to balance the project against classes

Live on campus

Typically, you join a project that's ongoing in the faculty member's
Els

Apply early in winter quarter at curis.stanford.edu

27


http://curis.stanford.edu

BS with honors

Recelve a special designation on your diploma ("'BS with honors™)

cngage In a yearlong research project your senior year

Takes the place of the senior project

Typically, you do this with faculty who you've already been working with

Apply In the spring of your junior year

28



Pathways for research

Academic year
F@SeaFCh Professor

Summer CURIS »

|ﬂte I"ﬂSh | p Entrepreneur

Engineer / Engineering Lead

Research
S Interesting

Research scientist in industry

-

BS with honors
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Pathways for research

Academic year

researc h Professor
Resear(:h Research scientist in industry
o | » Summer CURIS » Ph D »
1S Iﬂtel”eStlﬂg IﬂterﬂShlp Entrepreneur

Engineer / Engineering Lead

BS with honors
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All of you can succeed
at a PhD!

A Ph.D. s a grown-up version of the research you do as an
undergraduate or masters student. You get much more control over
the projects you are working on, and become first author on the
resulting publication.

t's challenging because we doubt ourselves constantly. But you also
earn the abllity to tackle any complex problem.

Cool side benefit: become Dr. [Lastname]

31



How do | get in to a Ph.D.!?

The most important criteria for getting into a Ph.D. program s
demonstrated interest and ability to do research.

"How do | demonstrate interest and ability!” Do research!

32



How do | get in to a Ph.D.!?

In your statement, talk about research you did and the impact you
had on the project. (You can include your CS |97/ class project in itl)

You will want three recommendation letters from people with
Ph.D.s to support your case.

4

dically, one Is the -

aculty you worked most closely with on research.

i

e other two can

avallable.

e supporting letters, or other research mentors.
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What questions
do you have!?



Assighment 8: draft paper

Work together with your team to write a draft paper. I his should
be a complete draft In the template format of your research, and
include reviewable drafts of every section.

“Can we Include text we already wrote!” Absolutely! + tweaks

Do we need the results of our evaluation? Yes, but you can continue to

update your results through the final presentations.

“What If our project doesn't work out?!"” Still write up the report.

Negative results can be valua
your Idea or assumptions tha

dle. Un

hack In Discussion what it was about

- wasn”

" borne out.

Next week, we'll be doing mock peer review of your draft papers!

35



Writing a Paper
& Research Career Paths

Slide content shareable under a Creative Commons Attribution-
NonCommercial 4.0 International License.



