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Last time
Research introduces a fundamental new idea into the world
CS research can create sea changes in how we build computational 
systems and use them; these sea changes can drive major shifts in 
industry
CS research draws on many different methods — e.g., engineering, 
proof, design, probability, modeling — in different subfields
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Administrivia
Hopefully you’re all on Canvas now and enrolled in your section on 
Axess
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Today: bit flips and 
literature searches
How do we get to the point where we know what has been done, 
and why our idea is different, new, and exciting?
We’ll be using these skills in Assignment 2, out today and due next 
Wednesday.
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RELATED WORK
In this section, we motivate flash organizations through an
integration of the crowdsourcing and organizational design
research literature, and connect their design to lessons from
distributed work and peer production (Table 1).

Crowdsourcing workflows
Crowdsourcing is the process of making an open call for con-
tributions to a large group of people online [7, 37]. In this
paper, we focus especially on crowd work [42] (e.g., Amazon
Mechanical Turk, Upwork), in which contributors are paid
for their efforts. Current crowd work techniques are designed
for decomposable tasks that are coordinated by workflows
and algorithms [55]. These techniques allow for open-call
recruitment at massive scale [67] and have achieved success
in modularizable goals such as copyediting [6], real-time tran-
scription [47], and robotics [48]. The workflows can be op-
timized at runtime among a predefined set of activities [16].
Some even enable collaborative, decentralized coordination
instead of step-by-step instructions [46, 86]. As the area ad-
vanced, it began to make progress in achieving significantly
more complex and interdependent goals [43], such as knowl-
edge aggregation [30], writing [43, 61, 78], ideation [84, 85],
clustering [12], and programming [11, 50].

One major challenge to achieving complex goals has been that
microtask workflows struggle when the crowd must define
new behaviors as work progresses [43, 44]. If crowd workers
cannot be given plans in advance, they must form such action
plans themselves [51]. However, workers do not always have
the context needed to author correct new behaviors [12, 81],
resulting in inconsistent or illogical changes that fall short of
the intended outcome [44].

Recent work instead sought to achieve complex goals by mov-
ing from microtask workers to expert workers. Such sys-
tems now support user interface prototyping [70], question-
answering and debugging for software engineers [11, 22, 50],
worker management [28, 45], remote writing tasks [61], and
skill training [77]. For example, flash teams demonstrated that
expert workflows can achieve far more complex goals than
can be accomplished using microtask workflows [70]. We in
fact piloted the current study using the flash teams approach,
but the flash teams kept failing at complex and open-ended
goals because these goals could not be fully decomposed a
priori. We realized that flash teams, like other crowdsourc-
ing approaches, still relied on immutable workflows akin to
an assembly line. They always used the same pre-specified
sequence of tasks, roles, and dependencies.

Rather than structuring crowds like assembly lines, flash orga-
nizations structure crowds like organizations. This perspective
implies major design differences from flash teams. First, work-
ers no longer rely on a workflow to know what to do; instead,
a centralized hierarchy enables more flexible, de-individuated
coordination without pre-specifying all workers’ behaviors.
Second, flash teams are restricted to fixed tasks, roles, and
dependencies, whereas flash organizations introduce a pull
request model that enables them to fully reconfigure any or-
ganizational structure enabling open-ended adaptation that
flash teams cannot achieve. Third, whereas flash teams hire

the entire team at once in the beginning, flash organizations’
adaptation means the role structure changes throughout the
project, requiring on-demand hiring and onboarding. Taken
together, these affordances enable flash organizations to scale
to much larger sizes than flash teams, and to accomplish more
complex and open-ended goals. So, while flash teams’ pre-
defined workflows enable automation and optimization, flash
organizations enable open-ended adaptation.

Organizational design and distributed work
Flash organizations draw on and extend principles from organi-
zational theory. Organizational design research theorizes how
a set of customized organizational structures enable coordina-
tion [52]. These structures establish (1) roles that encode the
work responsibilities of individual actors [41], (2) groupings of
individuals (such as teams) that support local problem-solving
and interdependent work [13, 29], and (3) hierarchies that sup-
port the aggregation of information and broad communication
of centralized decisions [15, 87]. Flash organizations compu-
tationally represent these structures, which allows them to be
visualized and edited, and uses them to guide work and hire
workers. Some organizational designs (e.g., holacracy) are
beginning to computationally embed organizational structures,
but flash organizations are the first centralized organizations
that exist entirely online, with no offline complement. Organi-
zational theory also describes how employees and employers
are typically matched through the employee’s network [23],
taking on average three weeks for an organization to hire [17].
Flash organizations use open-calls to online labor markets
to recruit interested workers on-demand, which differs dra-
matically from traditional organizations and requires different
design choices and coordination mechanisms.

Organizational design research also provides important insight
into virtual and distributed teams. Many of the features af-
forded by collocated work, such as information exchange [64]
and shared context [14], are difficult to replicate in distributed
and online environments. Challenges arise due to language
and cultural barriers [62, 34], incompatible time zones [65, 68],
and misaligned incentives [26, 66]. Flash organizations must
design for these issues, especially because the workers will
not have met before. We designed our system using best prac-
tices for virtual coordination, such as loosely coupled work
structures [35, 64], situational awareness [20, 27], current state
visualization [10, 57], and rich communication tools [64].

Peer production
Flash organizations also relate to peer production [3]. Peer
production has produced notable successes in Wikipedia and
in free and open source software. One of the main differences
between flash organizations and peer production is whether
idea conception, decision rights, and task execution are central-
ized or decentralized. Centralization, for example through a
leadership hierarchy, supports tightly integrated work [15, 87];
decentralization, as in wiki software, supports more loosely
coupled work. Peer production tends to be decentralized,
which offers many benefits, but does not easily support inte-
gration across modules [4, 33], limiting the complexity of the
resulting work [3]. Flash organizations, in contrast, use central-
ized structures to achieve integrated planning and coordination,

Your goal
Getting to a section of a paper 
that looks and feels like this
Nominally, it surveys research; but, 
its true goal is to help you and 
others understand the novelty
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The Bit Flip



Recall: novelty
If the idea is already in the world, it is not considered novel, and 
thus not research. 
In other words, to do research, you need to achieve something that 
nobody else has ever done. That novel achievement is called the 
contribution of your research.
You’ll hear people say things like:

“This is an extremely novel contribution.”
“This work is a tad too incremental.” (its improvement or level of 
creativity over the state of the art is only minimal)
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Thus Zeus Begat Athena?
Novel ideas rarely spring forth fully formed from a reseacher’s head. 
They’re not cool ideas that erupt out of the void.
They’re much more often pivoted off of today’s work:

Some constraint that exists but shouldn’t, or visa versa 
A realization that an idea has been applied in domains like X and needs 
to be rethought in domains like ~X
A recognition that others have tried this technique in users of context A, 
or data of up to size N, but ~A or >>N breaks the technique. 

In other words, research ideas arise as a reaction to the researcher’s 
understanding of how people think about the problem today. 8



Bit flip: invert an assumption
Those examples were instances of a bit flip: an inversion of an 
assumption that the world has about how the world is supposed to 
work.
Recipe for a bit flip:

1) Articulate an assumption, often left implicit in prior work: this is the bit

2) “No, it should be this way instead:” argue for an alternative to 
that assumption

9
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Bit Flip Project
Network behaviors are 
defined in hardware, statically.

If we define the behaviors in 
software, networks can 
become more dynamic and 
more easily debuggable.

Software-defined 
networking

Code compilers should utilize 
smart algorithms to optimize 
into machine code.

Code compilers will find more 
efficient outcomes if they just 
do monte carlo (random!) 
explorations of optimizations.

STOKE

A minimum graph cut 
algorithms should always 
return correct answers.

A randomized, probabilistic 
algorithm will be much faster, 
and we can still prove a limited 
probability of an error.

Karger’s algorithm
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Bit Flip Project
Activity tracking requires 
custom hardware.

Activity tracking requires just a 
standard cell phone.

Ubifit

NLP machine learning models 
should read sentences word by 
word, so the model can see 
what’s before the current word

NLP machine learning models 
should consume the entire 
sentence at once, so the parser 
can see what’s before and after

BERT



Single paper bit flip
Your TA is starting your team out on the project with a paper that is 
adjacent to your idea. Think of this as your nearest neighbor 
paper.
Your paper will be some sort of delta off of that paper.

What assumption or limitation did it have, that you’re erasing?
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Literature search graph
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influence

Nearest
neighbor

Your
project



Literature search graph
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Bit in 
prior 
work

Bit has 
been  

flipped

Nearest
neighbor

Your
project

Imagine a set of design
axes. 

Your project should
maintain position on 
most of them, but 
differentiate itself along 
one axis.

Activity being
tracked

Activity tracking hardware
Specialized Commodity

Exercise

Diet



Single paper bit flip: example
Nearest neighbor paper [Follmer et al. ’13] : 

15

Your idea: 
manipulators with 
small mobile robots

What’s the bit flip? 
[2min]



Literature-level bit flip
Eventually your goal is not to pivot off a single paper, but off the 
literature more broadly. This makes for a stronger argument of 
novelty.
Recipe:

1) Read the literature. (Which papers? Stay tuned…)

2) What assumptions underlie all of the papers? : …
3) Which assumption are you changing? And why does it matter to the 
literature?

∀p ∈ papers
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Literature-level bit flip
Why do a literature-level bit flip instead of a paper-level bit flip?

There exist many possible bit flips for a single paper:

17

What if we changed the size of the pins?
What if we vibrated the pins for haptic feedback?
Could we make it mobile rather than mounted on a table?

…but not every possible bit flip matters. Some are incremental.

You identify more important ideas by bit flipping across a broader literature.



One paper: many possible bits

18

Nearest
neighbor

Your
project

Each separating line
is a possible bit flip.

Which one is best?



Literature: clearer bit flip

19

The broader an 
understanding you 
have of the literature 
and the design axes 
underneath it, the 
more effectively you 
can pick the right bit 
flip.



Literature: clearer bit flip

20

The broader an 
understanding you 
have of the literature 
and the design axes 
underneath it, the 
more effectively you 
can pick the right bit 
flip.



Literature-level bit flip
If your nearest neighbor paper assumed X and you want to do ~X, 
but other papers in the domain already assumed ~X with slightly 
different setups, it’s a more minor contribution.
Example:

You are creating a visual question answering algorithm that can look at a 
picture and answer a question about it. The nearest neighbor used an 
LSTM architecture.
You want to use a BERT architecture. That’s a paper-level bit flip.
But non-computer vision question answering algorithms already use 
BERT. So it’s still a contribution, just not as broad. 21



Ultimately…
It’s unlikely that you will find an idea that nobody has ever 
articulated in any context ever. 
Instead, your goal is to articulate the broadest class of papers 
possible that your bit flip applies to.

22



RELATED WORK
In this section, we motivate flash organizations through an
integration of the crowdsourcing and organizational design
research literature, and connect their design to lessons from
distributed work and peer production (Table 1).

Crowdsourcing workflows
Crowdsourcing is the process of making an open call for con-
tributions to a large group of people online [7, 37]. In this
paper, we focus especially on crowd work [42] (e.g., Amazon
Mechanical Turk, Upwork), in which contributors are paid
for their efforts. Current crowd work techniques are designed
for decomposable tasks that are coordinated by workflows
and algorithms [55]. These techniques allow for open-call
recruitment at massive scale [67] and have achieved success
in modularizable goals such as copyediting [6], real-time tran-
scription [47], and robotics [48]. The workflows can be op-
timized at runtime among a predefined set of activities [16].
Some even enable collaborative, decentralized coordination
instead of step-by-step instructions [46, 86]. As the area ad-
vanced, it began to make progress in achieving significantly
more complex and interdependent goals [43], such as knowl-
edge aggregation [30], writing [43, 61, 78], ideation [84, 85],
clustering [12], and programming [11, 50].

One major challenge to achieving complex goals has been that
microtask workflows struggle when the crowd must define
new behaviors as work progresses [43, 44]. If crowd workers
cannot be given plans in advance, they must form such action
plans themselves [51]. However, workers do not always have
the context needed to author correct new behaviors [12, 81],
resulting in inconsistent or illogical changes that fall short of
the intended outcome [44].

Recent work instead sought to achieve complex goals by mov-
ing from microtask workers to expert workers. Such sys-
tems now support user interface prototyping [70], question-
answering and debugging for software engineers [11, 22, 50],
worker management [28, 45], remote writing tasks [61], and
skill training [77]. For example, flash teams demonstrated that
expert workflows can achieve far more complex goals than
can be accomplished using microtask workflows [70]. We in
fact piloted the current study using the flash teams approach,
but the flash teams kept failing at complex and open-ended
goals because these goals could not be fully decomposed a
priori. We realized that flash teams, like other crowdsourc-
ing approaches, still relied on immutable workflows akin to
an assembly line. They always used the same pre-specified
sequence of tasks, roles, and dependencies.

Rather than structuring crowds like assembly lines, flash orga-
nizations structure crowds like organizations. This perspective
implies major design differences from flash teams. First, work-
ers no longer rely on a workflow to know what to do; instead,
a centralized hierarchy enables more flexible, de-individuated
coordination without pre-specifying all workers’ behaviors.
Second, flash teams are restricted to fixed tasks, roles, and
dependencies, whereas flash organizations introduce a pull
request model that enables them to fully reconfigure any or-
ganizational structure enabling open-ended adaptation that
flash teams cannot achieve. Third, whereas flash teams hire

the entire team at once in the beginning, flash organizations’
adaptation means the role structure changes throughout the
project, requiring on-demand hiring and onboarding. Taken
together, these affordances enable flash organizations to scale
to much larger sizes than flash teams, and to accomplish more
complex and open-ended goals. So, while flash teams’ pre-
defined workflows enable automation and optimization, flash
organizations enable open-ended adaptation.

Organizational design and distributed work
Flash organizations draw on and extend principles from organi-
zational theory. Organizational design research theorizes how
a set of customized organizational structures enable coordina-
tion [52]. These structures establish (1) roles that encode the
work responsibilities of individual actors [41], (2) groupings of
individuals (such as teams) that support local problem-solving
and interdependent work [13, 29], and (3) hierarchies that sup-
port the aggregation of information and broad communication
of centralized decisions [15, 87]. Flash organizations compu-
tationally represent these structures, which allows them to be
visualized and edited, and uses them to guide work and hire
workers. Some organizational designs (e.g., holacracy) are
beginning to computationally embed organizational structures,
but flash organizations are the first centralized organizations
that exist entirely online, with no offline complement. Organi-
zational theory also describes how employees and employers
are typically matched through the employee’s network [23],
taking on average three weeks for an organization to hire [17].
Flash organizations use open-calls to online labor markets
to recruit interested workers on-demand, which differs dra-
matically from traditional organizations and requires different
design choices and coordination mechanisms.

Organizational design research also provides important insight
into virtual and distributed teams. Many of the features af-
forded by collocated work, such as information exchange [64]
and shared context [14], are difficult to replicate in distributed
and online environments. Challenges arise due to language
and cultural barriers [62, 34], incompatible time zones [65, 68],
and misaligned incentives [26, 66]. Flash organizations must
design for these issues, especially because the workers will
not have met before. We designed our system using best prac-
tices for virtual coordination, such as loosely coupled work
structures [35, 64], situational awareness [20, 27], current state
visualization [10, 57], and rich communication tools [64].

Peer production
Flash organizations also relate to peer production [3]. Peer
production has produced notable successes in Wikipedia and
in free and open source software. One of the main differences
between flash organizations and peer production is whether
idea conception, decision rights, and task execution are central-
ized or decentralized. Centralization, for example through a
leadership hierarchy, supports tightly integrated work [15, 87];
decentralization, as in wiki software, supports more loosely
coupled work. Peer production tends to be decentralized,
which offers many benefits, but does not easily support inte-
gration across modules [4, 33], limiting the complexity of the
resulting work [3]. Flash organizations, in contrast, use central-
ized structures to achieve integrated planning and coordination,

Outcome
This all gets communicated in a  
Related Work section. (And, to a 
more limited extent, in the 
Introduction section.)
A related work section lays out 
the literature in a way that the 
reader can understand what 
you’re building on, and what your 
bit flip is relative to that prior 
research.
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In this section, we motivate flash organizations through an
integration of the crowdsourcing and organizational design
research literature, and connect their design to lessons from
distributed work and peer production (Table 1).
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Crowdsourcing is the process of making an open call for con-
tributions to a large group of people online [7, 37]. In this
paper, we focus especially on crowd work [42] (e.g., Amazon
Mechanical Turk, Upwork), in which contributors are paid
for their efforts. Current crowd work techniques are designed
for decomposable tasks that are coordinated by workflows
and algorithms [55]. These techniques allow for open-call
recruitment at massive scale [67] and have achieved success
in modularizable goals such as copyediting [6], real-time tran-
scription [47], and robotics [48]. The workflows can be op-
timized at runtime among a predefined set of activities [16].
Some even enable collaborative, decentralized coordination
instead of step-by-step instructions [46, 86]. As the area ad-
vanced, it began to make progress in achieving significantly
more complex and interdependent goals [43], such as knowl-
edge aggregation [30], writing [43, 61, 78], ideation [84, 85],
clustering [12], and programming [11, 50].

One major challenge to achieving complex goals has been that
microtask workflows struggle when the crowd must define
new behaviors as work progresses [43, 44]. If crowd workers
cannot be given plans in advance, they must form such action
plans themselves [51]. However, workers do not always have
the context needed to author correct new behaviors [12, 81],
resulting in inconsistent or illogical changes that fall short of
the intended outcome [44].

Recent work instead sought to achieve complex goals by mov-
ing from microtask workers to expert workers. Such sys-
tems now support user interface prototyping [70], question-
answering and debugging for software engineers [11, 22, 50],
worker management [28, 45], remote writing tasks [61], and
skill training [77]. For example, flash teams demonstrated that
expert workflows can achieve far more complex goals than
can be accomplished using microtask workflows [70]. We in
fact piloted the current study using the flash teams approach,
but the flash teams kept failing at complex and open-ended
goals because these goals could not be fully decomposed a
priori. We realized that flash teams, like other crowdsourc-
ing approaches, still relied on immutable workflows akin to
an assembly line. They always used the same pre-specified
sequence of tasks, roles, and dependencies.

Rather than structuring crowds like assembly lines, flash orga-
nizations structure crowds like organizations. This perspective
implies major design differences from flash teams. First, work-
ers no longer rely on a workflow to know what to do; instead,
a centralized hierarchy enables more flexible, de-individuated
coordination without pre-specifying all workers’ behaviors.
Second, flash teams are restricted to fixed tasks, roles, and
dependencies, whereas flash organizations introduce a pull
request model that enables them to fully reconfigure any or-
ganizational structure enabling open-ended adaptation that
flash teams cannot achieve. Third, whereas flash teams hire

the entire team at once in the beginning, flash organizations’
adaptation means the role structure changes throughout the
project, requiring on-demand hiring and onboarding. Taken
together, these affordances enable flash organizations to scale
to much larger sizes than flash teams, and to accomplish more
complex and open-ended goals. So, while flash teams’ pre-
defined workflows enable automation and optimization, flash
organizations enable open-ended adaptation.

Organizational design and distributed work
Flash organizations draw on and extend principles from organi-
zational theory. Organizational design research theorizes how
a set of customized organizational structures enable coordina-
tion [52]. These structures establish (1) roles that encode the
work responsibilities of individual actors [41], (2) groupings of
individuals (such as teams) that support local problem-solving
and interdependent work [13, 29], and (3) hierarchies that sup-
port the aggregation of information and broad communication
of centralized decisions [15, 87]. Flash organizations compu-
tationally represent these structures, which allows them to be
visualized and edited, and uses them to guide work and hire
workers. Some organizational designs (e.g., holacracy) are
beginning to computationally embed organizational structures,
but flash organizations are the first centralized organizations
that exist entirely online, with no offline complement. Organi-
zational theory also describes how employees and employers
are typically matched through the employee’s network [23],
taking on average three weeks for an organization to hire [17].
Flash organizations use open-calls to online labor markets
to recruit interested workers on-demand, which differs dra-
matically from traditional organizations and requires different
design choices and coordination mechanisms.

Organizational design research also provides important insight
into virtual and distributed teams. Many of the features af-
forded by collocated work, such as information exchange [64]
and shared context [14], are difficult to replicate in distributed
and online environments. Challenges arise due to language
and cultural barriers [62, 34], incompatible time zones [65, 68],
and misaligned incentives [26, 66]. Flash organizations must
design for these issues, especially because the workers will
not have met before. We designed our system using best prac-
tices for virtual coordination, such as loosely coupled work
structures [35, 64], situational awareness [20, 27], current state
visualization [10, 57], and rich communication tools [64].

Peer production
Flash organizations also relate to peer production [3]. Peer
production has produced notable successes in Wikipedia and
in free and open source software. One of the main differences
between flash organizations and peer production is whether
idea conception, decision rights, and task execution are central-
ized or decentralized. Centralization, for example through a
leadership hierarchy, supports tightly integrated work [15, 87];
decentralization, as in wiki software, supports more loosely
coupled work. Peer production tends to be decentralized,
which offers many benefits, but does not easily support inte-
gration across modules [4, 33], limiting the complexity of the
resulting work [3]. Flash organizations, in contrast, use central-
ized structures to achieve integrated planning and coordination,
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Each part of related work is 
laying out a subset of the 
literature, and a bit flip.

A
B

C

A

B

C



Performing a literature 
search

“An hour in the library saves you a year at the keyboard.”



Goal: build the literature graph
While I don’t literally draw out the graph, building up that 
understanding in my head and visualizing a few different axes is key 
in identifying the right bit flip.
So how do we get there?
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Step one: nearest neighbor
Start with a seed paper that is the closest in the design space to 
yours. This is your nearest neighbor paper.
Read this paper in depth. Understand it.
(Your nearest neighbor paper may not be a great paper! Often 
great ideas are adjacent to a near miss.)

27
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Step two: expand your horizon
What are the 3–5 most important citations to that nearest 
neighbor?

Look at the papers that it cited visibly and carefully in the Introduction 
and Related Work
Look at which papers it is arguing a bit flip from

Are those most important citations staying in the neighborhood of 
your topic, or going somewhere else? Keep the ones that are staying 
in the neighborhood.

29



How to expand the horizon
Backward influence: influential citations in the papers that you’ve 
read

Tools: reading

Forward influence: papers citing the ones  
that you’ve read

Tools: Google Scholar’s “Cited By”, 
Semantic Scholar’s “highly influenced”  
designation

Relatedness: contemporaneous but not citing
Tools: Google Scholar’s “Related articles” 30
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Nearest
neighbor

Your
project
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First expansion
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Second expansion
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continuing…
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Final set



Filtering your horizon
Not all papers achieve the same level of quality. Especially on white 
paper archives such as arXiv.org, quality can be variable.
How do I know what to read and what to ignore?

If the paper is from a reputable venue: ask your TA for the reputable 
venues in the field of your project, and stick to those venues. (Or ask the 
TA if you find a relevant paper outside of those venues and want a gut 
check.)
Or, if the paper is from a reputable institution or author: again, you might 
ask your TA whether an institution you’ve never heard of is reputable
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The halting problem
How do you know when to stop reading? When do you have 
enough confidence that your idea is the right contribution to 
pursue? 
What if you’ve missed something?

37



Asymptoting
Keep track of how much you’re learning about the design axes 
as you consume the additional papers. Typically, you are learning the 
most at the very beginning, and the amount per paper starts going 
down after five papers or so.
A PhD student often  
asymptotes after  
25–35 papers.
For this class, we’ll 
go with 15 for now.
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Amount learned
per paper

Time



Reading a paper for a 
literature search



Temptation: understand 
everything.
Typically, when we come to a paper, we want to understand 
everything about it. We stop and reread any point we don’t get.
This can take an hour or two per paper for a new researcher.
This strategy can be useful at the beginning, but it is actively harmful 
in constructing a related work section.
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Understand the main point
Instead, articulate to yourself: what is the main point that this 
paper is making?
Then, focus your reading and effort most closely on the parts of the 
paper that are supporting or evaluating that point.
It’s OK not to understand every sentence in the paper. 
Your goal isn’t to understand the paper — it’s to understand 
the literature, what works and what doesn’t (and why!), and the 
bits that are available to flip.
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Writing the Related 
Work



Step 1: affinity mapping
Put each paper onto a post-it note
Place the post-it notes onto a whiteboard or wall, placing similar 
ideas close to each other.
Group by whatever makes sense to you.
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Step 2: regrouping
Typically, these first groups represent topics (nouns). This isn’t wrong, 
but it’s not the most helpful in writing a Related Work section.
So, instead, aim for each group to have a shared thesis behind it, not 
just a noun. Regroup your post-its around shared theses.
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Autoencoders

Not good:

Autoencoding ensures the 
language model retains the 
question that it is answering

Better :



Step 3: outlining
Each thesis then becomes the topic sentence of a paragraph of the 
Related Work section
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Autoencoding ensures the 
language model retains the 
question that it is answering

Visual Question Answering 
as a task benefits from 

having question localization

Transformer-based 
language models 

dramatically improve 
performance on the Visual 
Question Answering task



Step 4: writing
The temptation when 
writing is to list all the 
related work under the 
topic. Don’t do this.
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Projects have used runtime 
feedback to help programmers 
debug projects. The Arsinine 
project highlighted variables as 
they are being accessed [4]. 
Achilles produced a summary 
report on the command line after 
execution completed [7]. More 
recently, Arbuckle played annoying 
sounds from the computer 

Instead, start with the 
thesis, and use the 
paragraph to prove the 
thesis.
Runtime feedback of memory accesses 
gives programmers an intuitive sense of 
whether the program’s behavior match their 
intuitions. Highlighting variables as they are 
accessed provides a rough understanding 
of the most-used items [4]. Complementing 
this report with a summary afterwards 
helps support this sensemaking [7]. 
Particularly worrisome program behaviors 
are more likely to be noticed when 



Step 4: writing
Once you’ve summarized the work, articulate the bit flip.
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Runtime feedback of memory accesses 
gives programmers an intuitive sense of 
whether the program’s behaviors match 
their intuitions. Highlighting variables as 
they are accessed provides a rough 
understanding of the most-used items [4]. 
Complementing this report with a summary 
afterwards helps support this sensemaking 
[7]. Particularly worrisome program 
behaviors are more likely to be noticed 

Where this prior work suggests that 
programmers make fewer errors when 
given runtime feedback of memory 
accesses, this project demonstrates that 
runtime feedback of function call graphs 
help reduce errors as well. We draw on 
techniques from the prior literature such as 
highlighting and post-hoc summaries, and 
extend these with a visualization algorithm 
for function calls.



RELATED WORK
In this section, we motivate flash organizations through an
integration of the crowdsourcing and organizational design
research literature, and connect their design to lessons from
distributed work and peer production (Table 1).

Crowdsourcing workflows
Crowdsourcing is the process of making an open call for con-
tributions to a large group of people online [7, 37]. In this
paper, we focus especially on crowd work [42] (e.g., Amazon
Mechanical Turk, Upwork), in which contributors are paid
for their efforts. Current crowd work techniques are designed
for decomposable tasks that are coordinated by workflows
and algorithms [55]. These techniques allow for open-call
recruitment at massive scale [67] and have achieved success
in modularizable goals such as copyediting [6], real-time tran-
scription [47], and robotics [48]. The workflows can be op-
timized at runtime among a predefined set of activities [16].
Some even enable collaborative, decentralized coordination
instead of step-by-step instructions [46, 86]. As the area ad-
vanced, it began to make progress in achieving significantly
more complex and interdependent goals [43], such as knowl-
edge aggregation [30], writing [43, 61, 78], ideation [84, 85],
clustering [12], and programming [11, 50].

One major challenge to achieving complex goals has been that
microtask workflows struggle when the crowd must define
new behaviors as work progresses [43, 44]. If crowd workers
cannot be given plans in advance, they must form such action
plans themselves [51]. However, workers do not always have
the context needed to author correct new behaviors [12, 81],
resulting in inconsistent or illogical changes that fall short of
the intended outcome [44].

Recent work instead sought to achieve complex goals by mov-
ing from microtask workers to expert workers. Such sys-
tems now support user interface prototyping [70], question-
answering and debugging for software engineers [11, 22, 50],
worker management [28, 45], remote writing tasks [61], and
skill training [77]. For example, flash teams demonstrated that
expert workflows can achieve far more complex goals than
can be accomplished using microtask workflows [70]. We in
fact piloted the current study using the flash teams approach,
but the flash teams kept failing at complex and open-ended
goals because these goals could not be fully decomposed a
priori. We realized that flash teams, like other crowdsourc-
ing approaches, still relied on immutable workflows akin to
an assembly line. They always used the same pre-specified
sequence of tasks, roles, and dependencies.

Rather than structuring crowds like assembly lines, flash orga-
nizations structure crowds like organizations. This perspective
implies major design differences from flash teams. First, work-
ers no longer rely on a workflow to know what to do; instead,
a centralized hierarchy enables more flexible, de-individuated
coordination without pre-specifying all workers’ behaviors.
Second, flash teams are restricted to fixed tasks, roles, and
dependencies, whereas flash organizations introduce a pull
request model that enables them to fully reconfigure any or-
ganizational structure enabling open-ended adaptation that
flash teams cannot achieve. Third, whereas flash teams hire

the entire team at once in the beginning, flash organizations’
adaptation means the role structure changes throughout the
project, requiring on-demand hiring and onboarding. Taken
together, these affordances enable flash organizations to scale
to much larger sizes than flash teams, and to accomplish more
complex and open-ended goals. So, while flash teams’ pre-
defined workflows enable automation and optimization, flash
organizations enable open-ended adaptation.

Organizational design and distributed work
Flash organizations draw on and extend principles from organi-
zational theory. Organizational design research theorizes how
a set of customized organizational structures enable coordina-
tion [52]. These structures establish (1) roles that encode the
work responsibilities of individual actors [41], (2) groupings of
individuals (such as teams) that support local problem-solving
and interdependent work [13, 29], and (3) hierarchies that sup-
port the aggregation of information and broad communication
of centralized decisions [15, 87]. Flash organizations compu-
tationally represent these structures, which allows them to be
visualized and edited, and uses them to guide work and hire
workers. Some organizational designs (e.g., holacracy) are
beginning to computationally embed organizational structures,
but flash organizations are the first centralized organizations
that exist entirely online, with no offline complement. Organi-
zational theory also describes how employees and employers
are typically matched through the employee’s network [23],
taking on average three weeks for an organization to hire [17].
Flash organizations use open-calls to online labor markets
to recruit interested workers on-demand, which differs dra-
matically from traditional organizations and requires different
design choices and coordination mechanisms.

Organizational design research also provides important insight
into virtual and distributed teams. Many of the features af-
forded by collocated work, such as information exchange [64]
and shared context [14], are difficult to replicate in distributed
and online environments. Challenges arise due to language
and cultural barriers [62, 34], incompatible time zones [65, 68],
and misaligned incentives [26, 66]. Flash organizations must
design for these issues, especially because the workers will
not have met before. We designed our system using best prac-
tices for virtual coordination, such as loosely coupled work
structures [35, 64], situational awareness [20, 27], current state
visualization [10, 57], and rich communication tools [64].

Peer production
Flash organizations also relate to peer production [3]. Peer
production has produced notable successes in Wikipedia and
in free and open source software. One of the main differences
between flash organizations and peer production is whether
idea conception, decision rights, and task execution are central-
ized or decentralized. Centralization, for example through a
leadership hierarchy, supports tightly integrated work [15, 87];
decentralization, as in wiki software, supports more loosely
coupled work. Peer production tends to be decentralized,
which offers many benefits, but does not easily support inte-
gration across modules [4, 33], limiting the complexity of the
resulting work [3]. Flash organizations, in contrast, use central-
ized structures to achieve integrated planning and coordination,

Outcome
Paragraphs with topic sentences, 
then the bit flip re-articulated 
and expanded upon
About 600–700 words



Assignment 2
Perform a literature search for your project, alongside your group

Read the nearest neighbor paper, provided by your TA
Expand your literature search to ~15 papers
Affinity diagramming
Articulating a bit flip
Writing a 600 word Related Work section for your final paper

Due: next Wednesday 4pm on Canvas
Details at cs197.stanford.edu
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http://cs197.stanford.edu


Slide content shareable under a Creative Commons Attribution-
NonCommercial 4.0 International License.
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